scholarly journals All-Printed Human Activity Monitoring and Energy Harvesting Device for Internet of Thing Applications

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1197 ◽  
Author(s):  
Shawkat Ali ◽  
Saleem Khan ◽  
Amine Bermak

A self-powered device for human activity monitoring and energy harvesting for Internet of Things (IoT) devices is proposed. The self-powered device utilizes flexible Nano-generators (NGs), flexible diodes and off-the-shelf capacitors. During footsteps the NGs generate an AC voltage then it is converted into DC using rectifiers and the DC power is stored in a capacitor for powering the IoT devices. Polydimethylsiloxane (PDMS) and zinc stannate (ZnSnO3) composite is utilized for the NG active layer, indium tin oxide (ITO) and aluminum (Al) are used as the bottom and top electrodes, respectively. Four diodes are fabricated on the bottom electrode of the NG and connected in bridge rectifier configuration. A generated voltage of 18 Vpeak was achieved with a human footstep. The self-powered smart device also showed excellent robustness and stable energy scavenger from human footsteps. As an application we demonstrate human activity detection and energy harvesting for IoT devices.

2017 ◽  
Vol 28 (15) ◽  
pp. 2023-2035 ◽  
Author(s):  
Tarcísio Marinelli Pereira Silva ◽  
Carlos De Marqui

Piezoelectric materials have been used as sensors and actuators in vibration control problems. Recently, the use of piezoelectric transduction in vibration-based energy harvesting has received great attention. In this article, the self-powered active vibration control of multilayered structures that contain both power generation and actuation capabilities with one piezoceramic layer for scavenging energy and sensing, another one for actuation, and a central substructure is investigated. The piezoaeroelastic finite element modeling is presented as a combination of an electromechanically coupled finite element model and an unsteady aerodynamic model. An electrical circuit that calculates the control signal based on the electrical output of the sensing piezoelectric layer and simultaneously energy harvesting capabilities is presented. The actuation energy is fully supplied by the harvested energy, which also powers active elements of the circuit. First, the numerical predictions for the self-powered active vibration attenuation of an electromechanically coupled beam under harmonic base excitation are experimentally verified. Then, the performance of the self-powered active controller is compared to the performance of a conventional active controller in another base excitation problem. Later, the self-powered active system is employed to damp flutter oscillations of a plate-like wing.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 5001 ◽  
Author(s):  
Zhendong Zhuang ◽  
Yang Xue

As an active research field, sport-related activity monitoring plays an important role in people’s lives and health. This is often viewed as a human activity recognition task in which a fixed-length sliding window is used to segment long-term activity signals. However, activities with complex motion states and non-periodicity can be better monitored if the monitoring algorithm is able to accurately detect the duration of meaningful motion states. However, this ability is lacking in the sliding window approach. In this study, we focused on two types of activities for sport-related activity monitoring, which we regard as a human activity detection and recognition task. For non-periodic activities, we propose an interval-based detection and recognition method. The proposed approach can accurately determine the duration of each target motion state by generating candidate intervals. For weak periodic activities, we propose a classification-based periodic matching method that uses periodic matching to segment the motion sate. Experimental results show that the proposed methods performed better than the sliding window method.


2020 ◽  
Vol 8 (42) ◽  
pp. 22257-22268
Author(s):  
Manisha Sahu ◽  
Venkateswaran Vivekananthan ◽  
Sugato Hajra ◽  
Abisegapriyan K S ◽  
Nirmal Prashanth Maria Joseph Raj ◽  
...  

Improved energy harvesting performance in triboelectric nanogenerator using piezoelectric polarization for self-powered IR signaling and body activity monitoring.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 764 ◽  
Author(s):  
Jaehyun Park ◽  
Ganapati Bhat ◽  
Anish NK ◽  
Cemil S. Geyik ◽  
Umit Y. Ogras ◽  
...  

Wearable internet of things (IoT) devices can enable a variety of biomedical applications, such as gesture recognition, health monitoring, and human activity tracking. Size and weight constraints limit the battery capacity, which leads to frequent charging requirements and user dissatisfaction. Minimizing the energy consumption not only alleviates this problem, but also paves the way for self-powered devices that operate on harvested energy. This paper considers an energy-optimal gesture recognition application that runs on energy-harvesting devices. We first formulate an optimization problem for maximizing the number of recognized gestures when energy budget and accuracy constraints are given. Next, we derive an analytical energy model from the power consumption measurements using a wearable IoT device prototype. Then, we prove that maximizing the number of recognized gestures is equivalent to minimizing the duration of gesture recognition. Finally, we utilize this result to construct an optimization technique that maximizes the number of gestures recognized under the energy budget constraints while satisfying the recognition accuracy requirements. Our extensive evaluations demonstrate that the proposed analytical model is valid for wearable IoT applications, and the optimization approach increases the number of recognized gestures by up to 2.4× compared to a manual optimization.


Nanoscale ◽  
2021 ◽  
Author(s):  
Manikandan Muthu ◽  
Pandey Rajagopalan ◽  
Shujia Xu ◽  
I. A. Palani ◽  
Vipul Singh ◽  
...  

Efficaciously scavenging waste mechanical energy from the environment is an emerging field in the self-powered and self-governing electronics system which solves battery limitations. it demonstrates enormous potential in various fields...


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Yuan Dong ◽  
Dezhi Li ◽  
Benjamin Ducharne ◽  
Xiaohui Wang ◽  
Jun Gao ◽  
...  

Energy harvesting for self-powered wireless sensor networks (WSNs) is increasingly needed. In this paper, a self-powered WSN node scenario is proposed and realized by coupling the electric charge extraction interface circuit, power management module, and wireless communication module. Firstly, the output power of an optimized self-powered energy extraction circuit is compared with different energy extraction circuits under various loads and excitation amplitudes theoretically. Then, an energy-harvesting setup is established to validate the load-carrying capacity and working condition of the self-powered optimized synchronized switch harvesting on inductor (SP-OSSHI) circuit. It gives guidance to select and estimate the appropriate energy-consuming level for the sensor and modules. Finally, by connecting the energy-harvesting system, power management element, and sensing part together, a self-powered wireless sensor node is accomplished. Under 18 Hz resonant excitation, the whole self-powered system transmits 32 bytes of data every 30 seconds including the acceleration and environment temperature. This prototype strongly proves the feasibility of the self-powered WSN node. These research results have potential to be used in different application fields.


2020 ◽  
Vol 13 (3) ◽  
pp. 145-269
Author(s):  
Ganapati Bhat ◽  
Ujjwal Gupta ◽  
Yigit Tuncel ◽  
Fatih Karabacak ◽  
Sule Ozev ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (37) ◽  
pp. 21887-21894 ◽  
Author(s):  
Minmin Zhu ◽  
Soon Siang Chng ◽  
Weifan Cai ◽  
Chongyang Liu ◽  
Zehui Du

Miniaturized, wearable and self-powered sensors are crucial for applications in artificial intelligence, robotics, healthcare, and communication devices.


2020 ◽  
Vol 8 (11) ◽  
pp. 3715-3723 ◽  
Author(s):  
Sheng Wang ◽  
Fang Yuan ◽  
Shuai Liu ◽  
Jianyu Zhou ◽  
Shouhu Xuan ◽  
...  

A smart triboelectric nanogenerator with controllable mechanical and energy-harvesting properties has been developed, and the self-powered sensing performance for multiple fields was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document