scholarly journals Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling

2020 ◽  
Vol 8 (34) ◽  
pp. 11687-11694
Author(s):  
Sampath Gamage ◽  
Evan S. H. Kang ◽  
Christina Åkerlind ◽  
Samim Sardar ◽  
Jesper Edberg ◽  
...  

We embedded IR-resonant microparticles as visible scatterers and thermal emitters in a transparent nanocellulose composite, to form a metamaterial that provides radiative cooling while simultaneously functioning as an optical diffuser.

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1198
Author(s):  
Mourad Benlattar ◽  
Issam Ibourk ◽  
Rahma Adhiri

The passive radiative cooling approach refers to the physical process that pumps heat into outer space via the atmospheric window (8–13 μm) without energy input. The ability to continuously adjust the emissivity of thermal emitters in the sky window while maintaining high reflectivity in the solar spectrum remains a challenge. In order to achieve this task, a novel design referred to as double-layer nanoparticle-based coating is proposed. Our proposed emitter is appropriate for both high solar reflection and strong mid-infrared emissivity. The bottom and top layers are Al2O3 embedded with Ni nanoparticles and a super-hydrophilic TiO2-SiO2 layer. The bottom layer is designed to achieve high emissivity in “the atmospheric transparency window”. The top layer is designed to block solar illumination and to favor an enhanced cleanability of the coated design. Our double-layer coating as an optical solar reflector has excellent solar irradiation ( and is strongly emissive (0.97) across the “full sky window” at room temperature. Furthermore, a detailed numerical energy study has been performed, evaluating the temperature reduction and the radiative cooling performance under different conditions. The proposed simple coating can be used as an efficient radiative cooler on a large scale for energy conservation and thermoelectric devices.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Nano Letters ◽  
2020 ◽  
Author(s):  
Yipeng Chen ◽  
Baokang Dang ◽  
Jinzhou Fu ◽  
Chao Wang ◽  
Caicai Li ◽  
...  

2021 ◽  
Vol 8 (10) ◽  
pp. 2170057
Author(s):  
Min Hyung Kang ◽  
Gil Ju Lee ◽  
Joong Hoon Lee ◽  
Min Seok Kim ◽  
Zheng Yan ◽  
...  
Keyword(s):  

2021 ◽  
Vol 230 ◽  
pp. 111275
Author(s):  
Roger Vilà ◽  
Ingrid Martorell ◽  
Marc Medrano ◽  
Albert Castell

Author(s):  
Weilong Jing ◽  
Shuai Zhang ◽  
Wei Zhang ◽  
Zhang Chen ◽  
Canying Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document