First-principles study on structural and electrochemical properties of NaxTi2O4 (0 ≤ x ≤ 1) with tunnel structure for anode application of alkali-ion battery

Author(s):  
Song-Hyok Choe ◽  
Chol-Jun Yu ◽  
Yong-Chol Pak ◽  
Ye-Gyong Choe ◽  
Kwang-Il Jon ◽  
...  

Due to low cost and easy synthesizing method, several kinds of sodium titanates have been explored as anode materials for sodium ion batteries (SIBs). However, some of them have not...

2018 ◽  
Vol 6 (15) ◽  
pp. 6183-6205 ◽  
Author(s):  
Wanlin Wang ◽  
Weijie Li ◽  
Shun Wang ◽  
Zongcheng Miao ◽  
Hua Kun Liu ◽  
...  

With the high consumption and increasing price of lithium resources, sodium ion batteries (SIBs) have been considered as attractive and promising potential alternatives to lithium ion batteries, owing to the abundance and low cost of sodium resources, and the similar electrochemical properties of sodium to lithium.


2016 ◽  
Vol 689 ◽  
pp. 805-811 ◽  
Author(s):  
Dandan Tao ◽  
Zhenxing Fang ◽  
Mei Qiu ◽  
Yi Li ◽  
Xin Huang ◽  
...  

Author(s):  
Sankha Ghosh

Seeking cheap, efficient and sustainable alternatives to lithium-ion batteries (LIBs), sodium-ion batteries (SIBs) has emerged as a realm of research, due to the abundance of Na in the earth's crust.


2016 ◽  
Vol 4 (2) ◽  
pp. 451-457 ◽  
Author(s):  
Rafael B. Araujo ◽  
M. S. Islam ◽  
Sudip Chakraborty ◽  
R. Ahuja

Sodium ion batteries have emerged as a good alternative to lithium based systems due to their low cost of production.


2020 ◽  
Vol 44 (21) ◽  
pp. 8910-8921
Author(s):  
Abdul Majid ◽  
Khuzaima Hussain ◽  
Salah Ud-Din Khan ◽  
Shahab Ud-Din Khan

The application of sodium ion batteries (NIB) for use as rechargeable energy storage devices is yet under research due to limited knowledge on electrode materials.


Author(s):  
Ya-Ping Wang ◽  
B. P. Hou ◽  
Xin-Rui Cao ◽  
Shunqing Wu ◽  
Zi-Zhong Zhu

Abstract Prussian blue analogs (Na2FeFe(CN)6) have been regarded as potential cathode materials for sodium-ion batteries (SIBs) due to their low-cost iron resources and open framework. Herein, the detailed first-principles calculations have been performed to investigate the electrochemical properties of NaxFeFe(CN)6 during Na ion extraction. The material undergoes a phase transition from a dense rhombohedral to open cubic structure upon half-desodiation, which is resulted from competition of the Na−N Coulomb attraction and d−π covalent bonding of Fe−N. The analyses on the density of states, magnetic moments and Bader charges of NaxFeFe(CN)6 reveal that there involve in the successive redox reactions of high-spin Fe2+/Fe3+ and low-spin Fe2+/Fe3+ couples during desodiation. Moreover, the facile three-dimensional diffusion channels for Na+ ions exhibit low diffusion barriers of 0.4 eV ~ 0.44 eV, which ensures a rapid Na+ transport in the NaxFeFe(CN)6 framework, contributing to high rate performance of the battery. This study gives a deeper understanding of the electrochemical mechanisms of NaxFeFe(CN)6 during Na+ extraction, which is beneficial for the rational design of superior PBA cathodes for SIBs.


Author(s):  
Ying Li ◽  
Xia Zhong ◽  
Xianwen Wu ◽  
Mingqi Li ◽  
Wei Zhang ◽  
...  

To develop high-performance and low-cost anode materials for sodium ion batteries, novel Bi/C nanosheet microspheres with open pore structure (labeled as ops-Bi/C nanosheet microspheres), in which nanosheets are assembled from...


Sign in / Sign up

Export Citation Format

Share Document