Recent development of durable superhydrophobic materials for practical applications

Nanoscale ◽  
2021 ◽  
Author(s):  
Qinghong Zeng ◽  
Hui Zhou ◽  
Jinxia Huang ◽  
Zhiguang Guo

Although the biomimetic superhydrophobic surface shows great potential in oil-water separation, anti-icing and self-cleaning. However, due to the instability caused by its fragile structure and the non-durable superhydrophobicity, it is...

Author(s):  
Balraj K. Tudu ◽  
Aditya Kumar ◽  
Bharat Bhushan

Superoleophobicity is of interest for practical applications such as liquid repellency, self-cleaning, stain resistance, anti-bacterial properties and oil–water separation. In this work, the superoleophobic coating on cotton fabric was applied by simple immersion in TiO 2 nanoparticles, perfluorodecyltriethoxysilane and tertraethylorthosilicate solution. Its anti-wetting properties, surface morphology and functionality were characterized. The coated cotton fabric shows superoleophobicity with oil (surface tension more than 27 mN m −1 ) contact angle of 152° and tilt angle of 6°. Furthermore, the superoleophobic cotton fabric was demonstrated to exhibit self-cleaning, stain resistance, mechanical durability, chemical stability, thermal stability, anti-bacterial properties and oil–water separation capabilities. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 2)’.


2021 ◽  
Author(s):  
Qingbo Xu ◽  
Xiating Ke ◽  
Zongqian Wang ◽  
Peng Wang ◽  
Changlong Li

Abstract Improving the surface roughness and reducing the surface energy are the main strategies for constructing cotton fabrics with superhydrophobic surface. However, the complex finishing process and poor durability still impede the production and application of superhydrophobic cotton fabrics. Therefore, it is critical to produce superhydrophobic fabrics with excellent durability via a noncomplicated method. In this work, monomers of methyl methacrylate (MMA) and trifluoroethyl methacrylate (TFMA) were polymerized via free radical polymerization to produce a fluoropolymer. Then, the fabric was coated with the fluoropolymer to construct a superhydrophobic surface via the pad-dry-cure technology. The TFMA unit in the fluoropolymer had lower surface energy than the MMA unit. Under the high-temperature curing condition, the MMA unit in the fluoropolymer was grafted onto the cotton fabric via transesterification, and the TFMA was exposed on the fabric surface. The finished fabric showed durable superhydrophobic properties, outstanding oil–water separation properties, and excellent self-cleaning properties. Given the results, the finished fabric has great potential application in clothing and industrial fields.


Author(s):  
Yuandong Jia ◽  
Kecheng Guan ◽  
Pengfei Zhang ◽  
Qin Shen ◽  
Shengyao Wang ◽  
...  

Superwetting surfaces have several applications, such as self-cleaning, anti-fouling, anti-corrosion, water harvesting, and oil–water separation, owing to their distinct structure and properties. Hydrogel-based coatings are particularly attractive owing to their...


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4660-4671
Author(s):  
Yaofa Luo ◽  
Shuang Wang ◽  
Xihan Fu ◽  
Xiaosheng Du ◽  
Haibo Wang ◽  
...  

A durable superhydrophobic, self-cleaning cotton fabric based on UV curing was prepared and used in the field of oil/water separation.


Author(s):  
Yan Yan ◽  
Jiale Guo ◽  
Nuo Chen ◽  
Yuxin Song ◽  
Si Wu ◽  
...  

2017 ◽  
Vol 313 ◽  
pp. 398-403 ◽  
Author(s):  
Xin Du ◽  
Shijie You ◽  
Xiuheng Wang ◽  
Qiuru Wang ◽  
Jiandong Lu

Sign in / Sign up

Export Citation Format

Share Document