uv curing
Recently Published Documents


TOTAL DOCUMENTS

796
(FIVE YEARS 169)

H-INDEX

35
(FIVE YEARS 6)

Cellulose ◽  
2022 ◽  
Author(s):  
Xianwen Yang ◽  
Xiaohui Liu ◽  
Xuan Yang ◽  
Qiuyan Zhang ◽  
Yunbo Zheng ◽  
...  

2022 ◽  
Author(s):  
Chengqiang Ding ◽  
Zhengbiao Zhang ◽  
zhao wang

A well-controlled piezoelectrically mediated reversible addition-fragmentation chain transfer polymerization (piezo-RAFT) was carried out under ultrasound agitation with piezoelectric ZnO nanoparticles as the mechano-chemical trans-ducer. The resulting polymer had predictable molecular weight, high end-group fidelity, low dispersity, and capacity for chain extension. This chemistry was further adopted in curing composite resins to circumvent the light penetration limit of UV curing. This work opened a new avenue of piezoelectrically mediated chemistry and showed its good potential in curing applications.


Author(s):  
Wenjing Guo ◽  
Hu Jiyong ◽  
Xiong Yan

Abstract As a similar technology to the near-field static electrospinning, the emerging electrohydrodynamic (EHD) printing technology with digital printing process and compatibility of viscous particle-blended inks is one of the simplest methods of fabricating multifunctional electronic textiles.With increasing demands for textile-based conductive lines with controllable width and excellent electrical performance, it’s of great importance to know the influence of key process parameters on the morphology and electrical properties of EHD-printed UV-curing conductive lines on the fabric. This work will systematically explore the effect of the EHD printing process parameters (i.e. applied voltage, direct-writing height, flow rate and moving velocity of the substrate) on the morphology and electrical performance of the EHD-printed textile-based conductive lines, especially focus on the diffusion and penetration of inks on the rough and porous fabric. The UV-curing nano-silver ink with low temperature and fast curing features was selected, and the line width and electrical resistance of printed lines under different process parameters were observed and measured. The results showed that, unlike previous results about EHD printing on smooth and impermeable substrates, the ink diffusion related to fabric textures had a greater effect on the fabric-based conductive line width than the applied voltage and direct-writing height in the case of a stable jet. Meanwhile, the relationship between the line width and the flow rate met the equation of = 407.28 ∗ 1⁄2 , and the minimum volume on fabric per millimeter was 0.67μL to form continuous line with low electrical resistance. Additionally, the higher substrate moving velocity resulted in a smaller line width, while it deteriorated the thickness uniformity and electrical property of printed lines. Generally, due to the effect of surface structure of the fabric on the spreading and penetrating behavior of inks, the flow rate and the substrate moving velocity are two significant parameters ensuring the electrical property of printed lines. It is believed that these findings will provide some guides for applying electrohydrodynamic printing technology into flexible electronics on the woven fabric.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 211
Author(s):  
Adrian Bele ◽  
Liyun Yu ◽  
Mihaela Dascalu ◽  
Daniel Timpu ◽  
Liviu Sacarescu ◽  
...  

Interpenetrating polymer networks (IPNs) represent an interesting approach for tuning the properties of silicone elastomers due to the possible synergism that may occur between the networks. A new approach is presented, which consists of mixing two silicone-based networks with different crosslinking pathways; the first network being cured by condensation route and the second network by UV curing. The networks were mixed in different ratios and the resulted samples yield good mechanical properties (improved elongations, up to 720%, and Young’s modulus, 1 MPa), thermal properties (one glass transition temperature, ~−123 °C), good dielectric strength (~50 V/μm), and toughness (63 kJ/m3).


2021 ◽  
Vol 22 (4) ◽  
pp. 775-780
Author(s):  
M.M. Zhyhailo ◽  
I.Yu. Yevchuk ◽  
O.I. Demchyna ◽  
V.V. Kochubei ◽  
O.I. Makota

Using UV-curing technique the proton conductive polymer materials based on acrylic monomers: 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylic acid (AA) and acrylonitrile (AN), cross-linked by varying amounts of N,N'-methylene(bis)acrylamide (MBA), and the hybrid polymer/inorganic membrane of the same content with addition of sol-gel system (SGS) based on 3-methacryloxypropyl trimethoxysilane (MAPTMS) and tetraethoxysilane (TEOS) were synthesized. The obtained materials were characterized by analysis of thermal, mechanical and morphological properties. Proton conductivity and water uptake were found to depend on the level of cross-linking of the materials. The value of proton conductivity of the hybrid membrane was sufficiently high reaching 3.46 × 10-2 S cm-1.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Angela Dedvukaj ◽  
Peter Van den Mooter ◽  
Ivo F. J. Vankelecom

Solvent-resistant UV-cured supports consisting of a semi-interpenetrating network of polysulfone (PSf) and cross-linked poly-acrylate were successfully synthesized for the first time using an alternative, non-reprotoxic, and biodegradable solvent. Tamisolve® NxG is a high-boiling, dipolar aprotic solvent with solubility parameters similar to those of dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP), making it an eco-friendly alternative. The support membranes, prepared via UV-curing followed by non-solvent-induced phase inversion, can serve as a universal solvent-resistant support for the synthesis of a broad set of membranes, for which the selective layer can be deposited from any solvent. Parameters such as UV irradiation time and intensity, as well as the concentrations of PSf, penta-acrylate, and photo-initiator in the casting solution were varied to obtain such supports. The characteristics of the resulting supports were investigated in terms of separation performance, hydrophobicity, porosity, degree of acrylate conversion, and pure water flux. The resulting membranes showed improved chemical resistance in solvents such as ethyl acetate, NMP, tetrahydrofuran (THF), and toluene. Solvent-resistant supports with different pore sizes were synthesized and used for the preparation of thin film composite (TFC) membranes to demonstrate their potential. Promising separation performances with Rose Bengal (RB) rejections up to 98% and water permeances up to 1.5 L m−2 h−1 bar−1 were reached with these TFC-membranes carrying a polyamide top layer synthesized via interfacial polymerization.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1556
Author(s):  
Paulina Bednarczyk ◽  
Agnieszka Wróblewska ◽  
Agata Markowska-Szczupak ◽  
Paula Ossowicz-Rupniewska ◽  
Małgorzata Nowak ◽  
...  

This work presents studies on the obtaining of UV-curable coatings with antimicrobial activity. Urethane acrylates (UAs) have excellent physicochemical properties including high reactivity in systems with radical photoinitiators in the presence of UV radiation and good balance between hardness and flexibility in the formed coatings. At the same time, eugenol is well known as the compound hindering the growth of various microorganisms. Hence, the materials obtained by the modification of UA resins with eugenol can be used to protect various surfaces, especially against microorganisms. This study aimed to examine the influence of the amount of eugenol on the chemical, physical, thermal, and mechanical properties of the obtained UA coatings and find the conditions at which the optimal properties for industrial applications such coatings can be achieved. These materials were successfully obtained. Taking into account that eugenol is a very cheap reactant, and it can be obtained from natural sources by the simple distillation method, the proposed method combined the good points of obtaining protective coatings by UV curing with the utilization of vegetable, renewable reactants (biomass), such as components giving special properties to these materials, in this case, antimicrobial properties. In this study, photoreactive coatings with antimicrobial properties for the following microorganisms: fungi (C. albicans), Gram-positive bacteria (S. epidermidis) as well as Gram-negative bacteria (E. coli), were obtained. The obtained coatings were cured over a short time. They were colorless and characterized by a wide range of properties and applications.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cheng Chen ◽  
Bi-Wu Huang ◽  
Zheng-Ting Lu ◽  
Yang Wu

Abstract Precursor 3-ethyl-3-hydroxymethyloxetane was synthesized with trihydroxypropane and diethyl carbonate as the main raw materials. Intermediate 3-ethyl-3-allylmethoxyoxetane was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide. Prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane was synthesized with 3-ethyl-3-allylmethoxyoxetane and 1,1,3,3-tetramethyldisiloxane. Cationic photoinitiator triarylsulfonium hexafluoroantimonate of 3 wt% was added to the prepolymer, and a novel kind of photosensitive resin was prepared. Structures of the compounds obtained at individual stages of the synthesis were analyzed and characterized by FTIR and 1H-NMR. Photo-DSC analysis showed that the prepolymer had excellent photosensitivity. Thermogravimetric analysis (TG) revealed that the ultraviolet (UV)-cured samples owned excellent thermal stabilities of up to 405°C. And the mechanical properties of the UV-cured samples were tested by the universal material testing machine, giving 25.95 MPa of tensile strength, 2,935.15 MPa of elastic modulus, and 4.09% of elongation at break.


Sign in / Sign up

Export Citation Format

Share Document