curing reaction
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 51)

H-INDEX

30
(FIVE YEARS 4)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4329
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček

The rheometer curing curves of 50/50 blends of natural rubber (NR) and two different halogenated rubbers with a combination of conventional accelerated sulfur (CV) and 3 phr of a bismaleimide (MF3) at 170 °C indicates that a co-curing reaction has been taken place between NR and the halogenated rubbers via Diels–Alder reaction. To further confirm whether the co-curing reaction has taken place in the early stage of curing, a complex test methodology was applied with the help of a rubber process analyzer. In this test, the blends with CV and with CVMF3 were subjected to cure at 170 °C for a predetermined time so that both the CV and CVMF3 cured blends will have the same magnitude of curing torque. It is then cooled down to 40 °C and the storage modulus (G′) was evaluated as a function of strain from 0.5% to 100% at a constant frequency of 1 Hz. The results reveal that the blends cured with CVMF3 exhibit a higher G′ due to the enhanced network strength because of the formation of bismaleimide crosslinks than the same cured with only the CV system. The swelling resistance and the mechanical properties of the blends cured with CVMF3 were significantly higher than those cured with only the CV system.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1454
Author(s):  
Min Sun ◽  
Yufeng Bi ◽  
Wei Zhuang ◽  
Sai Chen ◽  
Pinhui Zhao ◽  
...  

This study focuses on analyzing the curing reaction mechanism of polyurethane (PU) binders and comprehensively evaluating the PU mixture’s properties. The former was investigated by conducting a Fourier transform infrared spectroscopy (FTIR) test on PU binders with different curing times. The volume change characteristics, construction operation time, and strength formation law were clarified through the splitting tensile test of PU mixtures under different environmental conditions. The optimal PU mixture stacking time and curing time under different environmental conditions were determined. The properties of the PU mixture and asphalt mixture were evaluated and compared through a rutting test, low-temperature bending test, freeze–thaw splitting test, and four-point bending fatigue test. The results show that the physical and chemical curing of the PU binder occurred within the first 24 h of curing, and the reaction speed gradually accelerated to form a polyurea structure 24 h later. It is recommended to stack the PU mixture for 4 h before compaction and to cure it for 2 days before opening under the conditions of 50% humidity and 15–40 °C surrounding temperature. The PU mixture shows better temperature stability and fatigue resistance than the asphalt mixture, and the splitting tensile strength of the PU mixture before and after the freeze–thaw splitting test is also higher. It is clear that the PU mixture is a green road building material with good performance.


2021 ◽  
pp. 701-706
Author(s):  
Yu Gu ◽  
Xin Qiu ◽  
Shanglin Xiao ◽  
Boming Tang ◽  
Lihong He ◽  
...  

2021 ◽  
Vol 2076 (1) ◽  
pp. 012052
Author(s):  
Weicheng Bai ◽  
Mengxiao Tao ◽  
Xianfeng Zhang ◽  
Jun Dong

Abstract The precursor conversion method provides the possibility of 3D printing ceramic materials, and the resin system with polysilazane as the precursor is expected to prepare high-performance ceramic materials for aviation. In this paper, the UV curing reaction system of polysilazane for 3D printing is taken as the research object, and hyperchem8.0 software is used as the research means. The model construction, chemical bond energy calculation, reaction enthalpy calculation and other modules in the software are used to simulate and predict the reaction process and mechanism of UV curing, which provides a theoretical basis for the selection and optimization of the subsequent UV curing reaction system for 3D printing.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bei Zhang ◽  
Baolin Wang ◽  
Yanhui Zhong ◽  
Shuangjie Wang ◽  
Xiaolong Li ◽  
...  

Polyurethane polymer grouting material has been effectively applied and promoted in the repair of road damages in nonfrozen areas. However, this material undergoes an exothermic reaction in the curing stage, which can cause a thermal disturbance in the frozen soil subgrade. To minimize the influence of the thermal disturbance of the polyurethane polymer grouting material in the repair of the frozen soil subgrade, an experiment was conducted to reduce the heat of the curing reaction under the influence of different proportions of a foaming agent, high-boiling point solvent, catalyst, and prepolymer. According to these test results, a proportioning scheme for the low exothermic polymer grouting material was formulated. The results indicated that the curing reaction temperature threshold of the polyurethane polymer grouting material was negatively related to the proportion of physical foaming agent (HCFC-141b) and high-boiling point solvent and positively related to the proportion of water weight. In the three stages of rapid temperature rise, slow temperature rise, and constant temperature, the rate of the temperature rise of the low exothermic polymer grouting material was lower than that of the common polymer, and the curing temperature threshold was 30.34% lower at a value of 101°C. At a density of 80 kg/m3, the compressive strength and tensile strength of the low heat release polymer grouting material were lower than those of the common polymer grouting material, thereby ensuring the excellent performance of polyurethane foam and providing a theoretical reference for the rapid repair of frozen soil roadbed diseases.


Author(s):  
Kuan Hoon Ngoi ◽  
Jia Chyi Wong ◽  
Chin Hua Chia ◽  
Kyeong Sik Jin ◽  
Heesoo Kim ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2879
Author(s):  
Shun Muroga ◽  
Yu Takahashi ◽  
Yuta Hikima ◽  
Seisuke Ata ◽  
Sergei G. Kazarian ◽  
...  

Here, we propose a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy method for simultaneously monitoring the curing reaction and the diffusion behavior of curing agents at the surface of rubber in real-time. The proposed scheme was demonstrated by fluorine rubber (FKM) and FKM/carbon nanotube (CNT) nanocomposites with a target curing agent of triallyl-isocyanurate (TAIC). The broadening and the evolution of the C=O stretching of TAIC were quantitatively analyzed to characterize the reaction and the diffusion. Changes in the width of the C=O stretching indicated the reaction rate at the surface was even faster than that of the bulk as measured by a curemeter. The diffusion coefficient of the curing agent in the course of heating was newly calculated by the initial increase in the absorbance and our model based on Fickian diffusion. The diffusion coefficients of TAIC during curing were evaluated, and its temperature and filler dependency were identified. Cross-sectional ATR-FTIR imaging and in situ ATR-FTIR imaging measurements supported the hypothesis of the unidirectional diffusion of the curing agent towards the heated surface. It was shown that our method of in situ ATR-FTIR can monitor the degrees of cure and the diffusion coefficients of curing agents simultaneously, which cannot be achieved by conventional methods, e.g., rheological measurements.


Sign in / Sign up

Export Citation Format

Share Document