Introduction to materials chemistry at Xi’an Jiaotong University

Author(s):  
Dongfeng Dang ◽  
Yanfeng Zhang ◽  
Shujiang Ding ◽  
Zhicheng Zhang

Dongfeng Dang, Yanfeng Zhang, Shujiang Ding and Zhicheng Zhang introduce the Materials Chemistry Frontiers themed collection on materials chemistry research at Xi’an Jiaotong University.

2021 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


2019 ◽  
Vol 90 (2) ◽  
pp. 024106 ◽  
Author(s):  
Evan P. Jahrman ◽  
William M. Holden ◽  
Alexander S. Ditter ◽  
Devon R. Mortensen ◽  
Gerald T. Seidler ◽  
...  

2022 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


MRS Bulletin ◽  
2020 ◽  
Vol 45 (11) ◽  
pp. 951-964 ◽  
Author(s):  
Beth S. Guiton ◽  
Morgan Stefik ◽  
Veronica Augustyn ◽  
Sarbajit Banerjee ◽  
Christopher J. Bardeen ◽  
...  

Abstract


2021 ◽  
Author(s):  
Xin Wu ◽  
Patrick Wang ◽  
William Lewis ◽  
Yun-Bao Jiang ◽  
Philip Alan Gale

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.


2019 ◽  
Vol 3 (11) ◽  
pp. 2205-2206
Author(s):  
Jialiang Xu ◽  
Xian-He Bu

Guest editors Xian-He Bu and Jialiang Xu introduce this themed collection of Materials Chemistry Frontiers dedicated to the 100th anniversary of Nankai University.


2020 ◽  
Vol 4 (3) ◽  
pp. 690-691
Author(s):  
Wenping Hu ◽  
Zhen Li ◽  
Liqiang Li

Wenping Hu, Zhen Li and Liqiang Li introduce the Materials Chemistry Frontiers themed collection on materials chemistry research at Tianjin University.


Author(s):  
J. Kulik ◽  
Y. Lifshitz ◽  
G.D. Lempert ◽  
S. Rotter ◽  
J.W. Rabalais ◽  
...  

Carbon thin films with diamond-like properties have generated significant interest in condensed matter science in recent years. Their extreme hardness combined with insulating electronic characteristics and high thermal conductivity make them attractive for a variety of uses including abrasion resistant coatings and applications in electronic devices. Understanding the growth and structure of such films is therefore of technological interest as well as a goal of basic physics and chemistry research. Recent investigations have demonstrated the usefulness of energetic ion beam deposition in the preparation of such films. We have begun an electron microscopy investigation into the microstructure and electron energy loss spectra of diamond like carbon thin films prepared by energetic ion beam deposition.The carbon films were deposited using the MEIRA ion beam facility at the Soreq Nuclear Research Center in Yavne, Israel. Mass selected C+ beams in the range 50 to 300 eV were directed onto Si {100} which had been etched with HF prior to deposition.


Sign in / Sign up

Export Citation Format

Share Document