scholarly journals Structural insights into targeting of the colchicine binding site by ELR510444 and parbendazole to achieve rational drug design

RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 18938-18944
Author(s):  
Jia-Hong Lei ◽  
Ling-Ling Ma ◽  
Jing-Hong Xian ◽  
Hai Chen ◽  
Jian-Jian Zhou ◽  
...  

Crystal structures of tubulin complexed with ELR510444 and parbendazole facilitate the design of novel colchicine binding site inhibitors.

2010 ◽  
Vol 76 (2) ◽  
pp. 154-163 ◽  
Author(s):  
Alan K. Kutach ◽  
Armando G. Villaseñor ◽  
Diana Lam ◽  
Charles Belunis ◽  
Cheryl Janson ◽  
...  

1996 ◽  
Vol 52 (a1) ◽  
pp. C204-C204
Author(s):  
S. E. Greasley ◽  
V. Reyes ◽  
E. A. Stura ◽  
M. S. Warren ◽  
S. J. Benkovic ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sara-Teresa Méndez ◽  
Adriana Castillo-Villanueva ◽  
Karina Martínez-Mayorga ◽  
Horacio Reyes-Vivas ◽  
Jesús Oria-Hernández

Author(s):  
Katja Silbermann ◽  
Jiyang Li ◽  
Vigneshwaran Namasivayam ◽  
Sven Marcel Stefan ◽  
Michael Wiese

1992 ◽  
Vol 286 (1) ◽  
pp. 9-11 ◽  
Author(s):  
T J Benson ◽  
J H McKie ◽  
J Garforth ◽  
A Borges ◽  
A H Fairlamb ◽  
...  

Trypanothione reductase, an essential component of the anti-oxidant defences of parasitic trypanosomes and Leishmania, differs markedly from the equivalent host enzyme, glutathione reductase, in the binding site for the disulphide substrate. Molecular modelling of this region suggested that certain tricyclic compounds might bind selectively to trypanothione reductase without inhibiting host glutathione reductase. This was confirmed by testing 30 phenothiazine and tricyclic antidepressants, of which clomipramine was found to be the most potent, with a K(i) of 6 microM, competitive with respect to trypanothione. Many of these compounds have been noted previously to have anti-trypanosomal and anti-leishmanial activity and thus they can serve as lead structures for rational drug design.


1993 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
G. D. Diana ◽  
T. J. Nitz ◽  
J. P. Mallamo ◽  
A. Treasurywala

The discovery of antipicornavirus activity associated with disoxaril 1 and related compounds, and the elucidation of the 3-dimensional structure of human rhinovirus-14 and −1A has lead to the use of rational drug design in the search for more potent and broad spectrum agents. The use of volume maps based on the X-ray conformation of these compounds in human rhinovirus-14 has revealed space filling requirements for activity for this serotype which has been confirmed by the use of the programme CoMFA. The principle interactions of the compounds within the binding site appear hydrophobic in nature. These studies have shown that maximum occupancy of the binding site is associated with good antiviral activity.


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


Sign in / Sign up

Export Citation Format

Share Document