histone lysine
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 191)

H-INDEX

66
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Shan Feng ◽  
Ruiming Wang ◽  
Hualiang Tan ◽  
Linlin Zhong ◽  
Yunjiang Cheng ◽  
...  

Petal senescence is controlled by a complex regulatory network. Epigenetic regulation like histone modification influences chromatin state and gene expression. However, involvement of histone methylation in regulating petal senescence is still largely unknown. Here, we found that the trimethylation of histone H3 at Lysine 4 (H3K4me3) is increased during the ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The H3K4me3 levels are positively associated with the expression of transcription factor DcWRKY75, ethylene biosynthetic genes DcACS1 and DcACO1, and senescence associated genes (SAGs) DcSAG12 and DcSAG29. Further, we identified that carnation DcATX1 (ARABIDOPSIS HOMOLOG OF TRITHORAX1) encodes a histone lysine methyltransferase which can methylate H3K4. Knockdown of DcATX1 delays ethylene induced petal senescence in carnation, which is associated with the downregulated expression of DcWRKY75, DcACO1 and DcSAG12. While overexpression of DcATX1 exhibits the opposite effects. DcATX1 promotes the transcription of DcWRKY75, DcACO1 and DcSAG12 by targeting to their promoters to elevate the H3K4me3 levels. Overall, our results demonstrate that DcATX1 is a H3K4 methyltransferase that promotes the expression of DcWRKY75, DcACO1 and DcSAG12 by regulating H3K4me3 levels, thereby accelerating ethylene induced petal senescence in carnation. This study further indicates that epigenetic regulation is important for plant senescence process.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Jiamin Zhu ◽  
Zhili Liu ◽  
Xiao Liang ◽  
Lu Wang ◽  
Dan Wu ◽  
...  

Objective. Exome sequencing studies have shown that the histone-lysine N-methyltransferase 2 (KMT2) gene is one of the most commonly mutated genes in a range of human malignancies and is linked to some of the most common and deadly solid tumors. However, the connection between this gene family’s function and tumor type, immunological subtype, and molecular subtype dependency is still unknown. Methods. We examine the expression patterns of the histone-lysine N-methyltransferase 2 (KMT2) gene, as well as their relationship to patient survival. We also used a pan-cancer analysis to link their function to immunological subtypes, the tumor microenvironment, and treatment sensitivity. Results. Using the TCGA pan-cancer data, researchers looked at and examined KMT2 expression patterns and their links to patient survival and the tumor microenvironment in 33 cancer types. The expression of the KMT2 family changes significantly across and within cancer types, indicating significant inter- and intracancer heterogeneity. Patients’ overall survival was often linked to the expression of KMT2 family members. However, the direction of the link differed depending on the KMT2 isoform and cancer type studied. Notably, in all cancer types examined, nearly all KMT2 family members were substantially linked with overall survival in patients with renal clear cell carcinoma (KIRC). Furthermore, all KMT2 genes have a strong relationship with immune infiltrate subtypes, as well as varying degrees of stromal cell infiltration and tumor cell stemness. Finally, we discovered that higher expression of KMT2s, particularly KMT2F and KMT2G, was linked to greater chemotherapeutic sensitivity in several cell lines. Conclusions. The necessity to investigate each KMT2 member as a distinct entity inside each particular cancer type is highlighted by our comprehensive investigation of KMT2 gene expression and its relationship with immune infiltrates, tumor microenvironment, and cancer patient outcomes. Our research also confirmed the identification of KMT2 as a potential therapeutic target in cancer, but further laboratory testing is required.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Lina Dong ◽  
Lei Yu ◽  
Jin Zhong

Abstract Objective Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Histone lysine-specific demethylase 1 (LSD1) is a flavin-containing amino oxidase that can repress or activate transcription. The aim of this study is to explore the mechanism of LSD1 aggravating DN-induced renal fibrosis. Methods The STZ-induced DN rat model was established for in vivo study. The rats were divided into four groups: Sham, STZ, STZ + Ad-shNC and Ad-shLSD1. The Hematoxylin–eosin (HE) staining was used to evaluate the renal injury. The Immunofluorescence assay was used to determine the LSD1, Fibronectin and α-SMA expression. The related protein expression was detected by western blot. Results Knockdown of LSD1 alleviated STZ-induced renal injury. Moreover, knockdown of LSD1 decreased the expression of serum biochemical markers, containing urine output (24 h), urinary protein (24 h), serum creatinine, BUN and UACR. Furthermore, we proved that knockdown of LSD1 alleviated renal fibrosis in STZ-induced DN rats. In vitro, knockdown of LSD1 suppressed NRK-49F cells activation and overexpression of LSD1 induced renal fibrosis. In addition, knockdown of LSD1 could deactivate TGF-β1/Smad3 pathway and promote sirtuin 3 (SIRT3) expression in vivo and in vitro. The rescue experiments confirmed that LSD1 induced renal fibrosis via decreasing SIRT3 expression and activating TGF-β1/Smad3 pathway. Conclusion LSD1 deficiency leads to alleviate STZ-induced renal injury and overexpression of LSD1 induces renal fibrosis via decreasing SIRT3 expression and activating TGF-β1/Smad3 pathway, which provides a reasonable strategy for developing novel drugs targeting LDS1 to block renal fibrosis.


2021 ◽  
Vol 23 (1) ◽  
pp. 2
Author(s):  
Minli Wei ◽  
Jia Li ◽  
Huili Yan ◽  
Tao Luo ◽  
Jiang Huang ◽  
...  

Post-translational modifications (PTMs) have been confirmed to be involved in multiple female reproductive events, but their role in physiological ovarian aging is far from elucidated. In this study, mice aged 3, 12 or 17 months (3M, 12M, 17M) were selected as physiological ovarian aging models. The expression of female reproductive function-related genes, the global profiles of PTMs, and the level of histone modifications and related regulatory enzymes were examined during physiological ovarian aging in the mice by quantitative real-time PCR and western blot, respectively. The results showed that the global protein expression of Kbhb (lysineβ-hydroxybutyryllysine), Khib (lysine 2-hydroxyisobutyryllysine), Kglu (lysineglutaryllysine), Kmal (lysinemalonyllysine), Ksucc (lysinesuccinyllysine), Kcr (lysinecrotonyllysine), Kbu (lysinebutyryllysine), Kpr (lysinepropionyllysine), SUMO1 (SUMO1 modification), ub (ubiquitination), P-Typ (phosphorylation), and 3-nitro-Tyr (nitro-tyrosine) increased significantly as mice aged. Moreover, the modification level of Kme2 (lysinedi-methyllysine) and Kac (lysineacetyllysine) was the highest in the 3M mice and the lowest in 12M mice. In addition, only trimethylation of histone lysine was up-regulated progressively and significantly with increasing age (p < 0.001), H4 ubiquitination was obviously higher in the 12M and 17M mice than 3M (p < 0.001), whereas the modification of Kpr (lysinepropionylation) and O-GlcNA in 17M was significantly decreased compared with the level in 3M mice (p < 0.05, p < 0.01). Furthermore, the expression levels of the TIP60, P300, PRDM9, KMT5B, and KMT5C genes encoding PTM regulators were up-regulated in 17M compared to 3M female mice (p < 0.05). These findings indicate that altered related regulatory enzymes and PTMs are associated with physiological ovarian aging in mice, which is expected to provide useful insights for the delay of ovarian aging and the diagnosis and treatment of female infertility.


Author(s):  
Kevin Christian M. Gulay ◽  
Keisuke Aoshima ◽  
Sangho Kim ◽  
Ryusei Kitaguchi ◽  
Atsushi Kobayashi ◽  
...  

2021 ◽  
Author(s):  
Frank Perabo ◽  
Sanghee Yoo ◽  
Chandtip Chandhasin ◽  
Joselyn Del Rosario ◽  
Young K. Chen ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kyle Delaney ◽  
Minjia Tan ◽  
Zhesi Zhu ◽  
Jinjun Gao ◽  
Lunzhi Dai ◽  
...  

AbstractHistone lysine crotonylation is a posttranslational modification with demonstrated functions in transcriptional regulation. Here we report the discovery of a new type of histone posttranslational modification, lysine methacrylation (Kmea), corresponding to a structural isomer of crotonyllysine. We validate the identity of this modification using diverse chemical approaches and further confirm the occurrence of this type of histone mark by pan specific and site-specific anti-methacryllysine antibodies. In total, we identify 27 Kmea modified histone sites in HeLa cells using affinity enrichment with a pan Kmea antibody and mass spectrometry. Subsequent biochemical studies show that histone Kmea is a dynamic mark, which is controlled by HAT1 as a methacryltransferase and SIRT2 as a de-methacrylase. Altogether, these investigations uncover a new type of enzyme-catalyzed histone modification and suggest that methacrylyl-CoA generating metabolism is part of a growing number of epigenome-associated metabolic pathways.


2021 ◽  
Author(s):  
John Kaniaru Gitau ◽  
Rosaline Wanjiru Macharia ◽  
Kennedy Wanjau Mwangi ◽  
Nehemiah Mosioma Ongeso ◽  
Edwin Murungi

Background: Rift Valley Fever (RVF) is a viral disease caused by the Rift Valley Fever virus and spread mainly by the Aedes and Culex mosquito species. The disease primarily infects domestic animals such as sheep, goats, and cattle, resulting in a spectrum of clinical outcomes including morbidity, massive storm abortions, and neonatal fatalities. RVF outbreaks are closely linked to above-average rainfall and flooding, which create an ideal environment for mosquitos to breed, multiply, and transmit the virus to animals. The outcomes of human RVF infection range from self-limiting febrile illness to potentially fatal hemorrhagic diatheses and miscarriage in pregnant women. Collectively, the economic losses due to the zoonotic RVF disease is immense. Methods: Using the Weighted Gene Co-expression Network Analysis (WGCNA) package, RNA-Seq data generated from five healthy Bos taurus steer calves aged 4-6 months was obtained from the Gene Expression Omnibus (GEO) database (Accession number GSE71417). The data was utilized to construct a gene co-expression network. Enriched modules containing genes potentially involved in RVF infection progression were identified. Moreover, using the Multiple Expectation Maximizations for Motif Elicitation (MEME) suite, consensus regulatory motifs of enriched gene clusters were deciphered and the most abundant putative regulatory motif in each enriched module unveiled by comparative analysis with publicly available motifs using the TOMTOM motif comparison tool. The potential roles of the identified regulatory motifs were inferred by literature mining. Results: The constructed gene co-expression network revealed thirty-three (33) modules, nine of which were enriched for Gene Ontology terms linked to RVF pathogenesis. Functional enrichment in two (red and turquoise) of the nine modules was significant. ASH1-like histone lysine methyltransferase and Astrotactin were the hub genes for the red and turquoise modules respectively. ASH1-like histone lysine methyltransferase gene is involved in chromatin epigenetic modification while Astrotactin is a vertebrate-specific gene that plays an important role in neurodevelopment. Additionally, consensus regulatory motifs located on the 3' end of genes in each enriched module was identified. Conclusions: In this study, we have developed a gene co-expression network that has aided in the unveiling of functionally related genes, intramodular hub genes, and immunity genes potentially involved in RVF pathogenesis. The discovery of functional genes with putative critical roles in the establishment of RVF infection establishment will contribute to the understanding of the molecular mechanism of RVF pathogenesis. Importantly, the putative regulatory motifs identified are plausible targets for RVF drug and vaccine development. Keywords: Rift Valley Fever, Bos taurus, Gene co-expression network, modules, hub genes, Regulatory motifs.


Sign in / Sign up

Export Citation Format

Share Document