scholarly journals Preparation of a double-network hydrogel based on wastepaper and its application in the treatment of wastewater containing copper(ii) and methylene blue

RSC Advances ◽  
2021 ◽  
Vol 11 (29) ◽  
pp. 18131-18143
Author(s):  
Yaoning Chen ◽  
Linshenzhang Li ◽  
Yuanping Li ◽  
Yihuan Liu ◽  
Yanrong Chen ◽  
...  

In this research, wastepaper was innovatively compounded with acrylamide to prepare a wastepaper/acrylamide double-network hydrogel and was applied to the treatment of the mixed wastewater containing copper(ii) and methylene blue.

Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
H Weiler ◽  
O Moeller ◽  
M Wohlhoefer ◽  
LO Conzelmann ◽  
J Albers ◽  
...  

2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
I. Kanzler ◽  
F. Guo ◽  
N. Bogert ◽  
A. Moritz ◽  
A. Beiras-Fernandez

2019 ◽  
Author(s):  
A Repici ◽  
C Hassan ◽  
R Bisschops ◽  
P Bhandari ◽  
E Dekker ◽  
...  

2019 ◽  
Vol 35 (3) ◽  
pp. 371-391
Author(s):  
AKANSHA DIXIT ◽  
◽  
DIBYENDU S. BAG ◽  
DHIRENDRA KUMAR SHARMA ◽  
HARJEET SINGH ◽  
...  

Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Sign in / Sign up

Export Citation Format

Share Document