A SEM and Light Microscope Study of the Epidermal Leaf Structures of the Carnivorous Plant, Sarracenia purpurea, L.

Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.

1980 ◽  
Vol 58 (8) ◽  
pp. 1477-1482 ◽  
Author(s):  
T. E. Drouin ◽  
J. L. Mahrt

A light microscope study of the cyst wall of some avian Sarcocystis spp. was undertaken to determine if there were morphological differences in cysts found in different bird species. The cyst wall of macrocysts was different in young and old ducks. Five kinds of microcysts were described from birds, two having smooth outer walls, and three having radial spines on their outer surface. Cysts were differentiated on the basis of the thickness of the outer wall, and on the length and proximity of the radial spines to each other. Specific cyst types were found in several different bird species, and given bird species may harbor more than one cyst type, sometimes concurrently. It is hypothesized that the different cyst types represent different species of Sarcocystis.


1971 ◽  
Vol 49 (12) ◽  
pp. 2067-2073 ◽  
Author(s):  
L. J. Littlefield ◽  
C. E. Bracker

The urediospores of Melampsora lini (Ehrenb.) Lev. are echinulate, with spines ca. 1 μ long over their surface. The spines are electron-transparent, conical projections, with their basal portion embedded in the electron-dense spore wall. The entire spore, including the spines, is covered by a wrinkled pellicle ca. 150–200 Å thick. The spore wall consists of three recognizable layers in addition to the pellicle. Spines form initially as small deposits at the inner surface of the spore wall adjacent to the plasma membrane. Endoplasmic reticulum occurs close to the plasma membrane in localized areas near the base of spines. During development, the spore wall thickens, and the spines increase in size. Centripetal growth of the wall encases the spines in the wall material. The spines progressively assume a more external position in the spore wall and finally reside at the outer surface of the wall. A mutant strain with finely verrucose spores was compared to the wild type. The warts on the surface of the mutant spores are rounded, electron-dense structures ca. 0.2–0.4 μ high, in contrast to spines of the wild type. Their initiation near the inner surface of the spore wall and their eventual placement on the outer surface of the spore are similar to that of spines. The wall is thinner in mutant spores than in wild-type spores.


1958 ◽  
Vol s3-99 (46) ◽  
pp. 279-284
Author(s):  
J.T. Y. CHOU ◽  
G. A. MEEK

The three kinds of lipid globules recognizable in the living neurones of Helix aspersa have been examined under the electron microscope. The globules of the kind that can be stained blue with methylene blue during life are seen in electron micrographs as spheres or spheroids, with concentric lamination, after calcium-osmium fixation. After fixation with sucrose-osmium laminated crescentic bodies are seen instead; these appear to be formed by distortion of the ‘blue’ globules. The yellow globules contain electrondense material, and sometimes appear reticular. It is possible that the yellow globules may originate by transformation of some of the ‘blue’ globules. The colourless globules generally appear as crenated objects; this appearance may be a shrinkage artifact. Apart from the mitochondria and the three kinds of lipid globules described, no other object large enough to be identified with the light microscope has been seen in the cytoplasm.


1957 ◽  
Vol 3 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Alan R. Muir

Prenatal and postnatal cardiac muscle from rabbits has been studied by electron microscopy, after osmium fixation and methacrylate embedding. The observations showed that 1. Cell membranes divide the muscle into cellular units from the youngest embryo which was studied (9½ days after coitus) until the adult state. 2. The embryonic muscle cells contain only one nucleus, whereas the adult cell may be multinucleated. 3. At all stages of development, wherever a myofibrillar axis crosses a cellular boundary, the myofilaments are interrupted by an intercalated disc. 4. With age, increase in size and complexity of the discs render them recognisable by the light microscope.


Blood ◽  
1960 ◽  
Vol 15 (4) ◽  
pp. 480-490 ◽  
Author(s):  
JAMES C. HAMPTON

Abstract Evidence that erythrocytes are phagocytized and dismantled by hepatic parenchymal cells in the newborn rabbit is presented. It is concluded that in these cells iron is recovered from disintegrating erythrocytes, synthesized into ferritin and released into the hepatic cell cytoplasm and into the biliary passages. These conclusions are based upon observations on the distribution of material giving the Prussian blue reaction in sections of liver as revealed by the light microscope and upon electron microscopic images of particles displaying the size, density and configuration of the ferritin molecule.


1993 ◽  
Vol 206 (1) ◽  
pp. 16-26 ◽  
Author(s):  
John W. Breneman ◽  
Peter Yau ◽  
Raymond L. Teplitz ◽  
E.Morton Bradbury

Author(s):  
Seiji Ioka ◽  
Shiro Kubo ◽  
Mayumi Ochi ◽  
Kiminobu Hojo

Thermal fatigue may develop in piping elbow with high temperature stratified flow. To prevent the fatigue damage by stratified flow, it is important to know the distribution of thermal stress and temperature history in a pipe. In this study, heat conduction inverse analysis method for piping elbow was developed to estimate the temperature history and thermal stress distribution on the inner surface from the outer surface temperature history. In the inverse analysis method, the inner surface temperature was estimated by using the transfer function database which interrelates the inner surface temperature with the outer surface temperature. Transfer function database was calculated by FE analysis in advance. For some patterns of the temperature history, inverse analysis simulations were made. It was found that the inner surface temperature history was estimated with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document