scholarly journals Kinetic effects of molecular clustering and solvation by extended networks in zeolite acid catalysis

2021 ◽  
Vol 12 (13) ◽  
pp. 4699-4708
Author(s):  
Jason S. Bates ◽  
Rajamani Gounder

“Solvent effects” at interfaces in heterogeneous catalysts are described by transition state theory treatments that identify kinetic regimes associated with molecular clustering and the solvation of such clusters by extended molecular networks.

1998 ◽  
Vol 63 (12) ◽  
pp. 1969-1976 ◽  
Author(s):  
Alvaro Domínguez ◽  
Rafael Jimenez ◽  
Pilar López-Cornejo ◽  
Pilar Pérez ◽  
Francisco Sánchez

Solvent effects, when the classical transition state theory (TST) holds, can be interpreted following the Brønsted equation. However, when calculating the activity coefficient of the transition state, γ# it is important to take into account that this coefficient is different from that of the precursor complex, γPC. The activity coefficient of the latter is, in fact, that calculated in classical treatments of salt and solvent effects. In this paper it is shown how the quotients γ#/γPC change when the reaction medium changes. Therefore, the conclusions taken on the basis of classical treatments may be erroneous.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses static solvent effects on the rate constant for chemical reactions in solution. It starts with a brief discussion of the thermodynamic formulation of transition-state theory. The static equilibrium structure of the solvent will modify the potential energy surface for the chemical reaction. This effect is analyzed within the framework of transition-state theory. The rate constant is expressed in terms of the potential of mean force at the activated complex. Various definitions of this potential and their relations to n-particle- and pair-distribution functions are considered. The potential of mean force may, for example, be defined such that the gradient of the potential gives the average force on an atom in the activated complex, Boltzmann averaged over all configurations of the solvent. It concludes with a discussion of a relation between the rate constants in the gas phase and in solution.


1999 ◽  
Vol 54 (6-7) ◽  
pp. 417-421
Author(s):  
Yasushi Ohga ◽  
Tsutomu Asano ◽  
Norbert Karger ◽  
Thomas Gross ◽  
Hans-Dietrich Lüdemann

Abstract The rate of the degenerate isomerization of N-hexafluoroisopropylidene-N’,N’-dimethyl-ρ-phe-nylenediamine was measured by high-pressure 19F NMR spectroscopy in a viscous hydrocar-bon, 2,4-dicyclohexyl-2-methylpentane. Pressure-induced retardations that cannot be rationalized within the framework of the transition state theory (TST) were observed, and it was concluded that the reaction was cast into the TST-invalid nonequilibrium conditions by high pressure.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses an approximate approach—transition-state theory—to the calculation of rate constants for bimolecular reactions. A reaction coordinate is identified from a normal-mode coordinate analysis of the activated complex, that is, the supermolecule on the saddle-point of the potential energy surface. Motion along this coordinate is treated by classical mechanics and recrossings of the saddle point from the product to the reactant side are neglected, leading to the result of conventional transition-state theory expressed in terms of relevant partition functions. Various alternative derivations are presented. Corrections that incorporate quantum mechanical tunnelling along the reaction coordinate are described. Tunnelling through an Eckart barrier is discussed and the approximate Wigner tunnelling correction factor is derived in the limit of a small degree of tunnelling. It concludes with applications of transition-state theory to, for example, the F + H2 reaction, and comparisons with results based on quasi-classical mechanics as well as exact quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document