scholarly journals Enhanced N-directed electrophilic C-H borylation generates BN-[5]- and [6]helicenes with improved photophysical properties.

2022 ◽  
Author(s):  
Kang Yuan ◽  
Daniel Volland ◽  
Sven Kirschner ◽  
Marina Uzelac ◽  
Gary Stephen Nichol ◽  
...  

Helicenes are chiral polycyclic aromatic hydrocarbons (PAHs) of significant interest e.g. in supramolecular chemistry, materials science and asymmetric catalysis. Herein an enhanced N-directed electrophilic C-H borylation methodology has been developed...

2021 ◽  
Author(s):  
Kang Yuan ◽  
Daniel Volland ◽  
Sven Kirschner ◽  
Marina Uzelac ◽  
Gary Nichol ◽  
...  

Helicenes are chiral polycyclic aromatic hydrocarbons (PAHs) of significant interest e.g. in supramolecular chemistry, materials science and asymmetric catalysis. Herein an enhanced N-directed electrophilic C-H borylation methodology has been developed that provides access to azaborine containing helicenes (BN-helicenes). This borylation process proceeds via protonation of an aminoborane with bistriflimidic acid. DFT calculations reveal the borenium cation formed by protonation to be more electrophilic than the product derived from aminoborane activation with BBr3. The synthesised helicenes include BN-analogues of archetypal all carbon [5]- and [6]helicenes. The replacement of a CC with a BN unit (that has a longer bond) on the outer helix increases the strain in the BN congeners and the racemization half-life for a BN-[5]helicene relative to the all carbon [5]helicene. BN incorporation also increases the fluorescence efficency of the helicenes, a direct effect of BN incorporation altering the distribution of the key frontier orbitals across the helical backbone relative to carbo-helicenes.


Chemistry ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 532-549
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four biphenylene-derived PAHs finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). The results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


2012 ◽  
Vol 84 (4) ◽  
pp. 1047-1067 ◽  
Author(s):  
Helga Seyler ◽  
Balaji Purushothaman ◽  
David J. Jones ◽  
Andrew B. Holmes ◽  
Wallace W. H. Wong

Polycyclic aromatic hydrocarbons (PAHs) are in a class of functional organic compounds with increasing importance in organic electronics. Their tunable photophysical properties and typically strong intermolecular associations make them ideal materials in applications where control of charge mobility is essential. Hexa-peri-hexabenzocoronene (HBC) is a disc-shaped PAH that self-associates into columnar stacks through strong π–π interactions. By decorating the periphery of the HBC molecule with various substituents, a range of properties and functions can be obtained including solution processability, liquid crystallinity, and semiconductivity. In this review article, the synthesis, properties, and functions of HBC derivatives are presented with focus on work published in the last five years.


2021 ◽  
Author(s):  
Felix Plasser

Polycyclic aromatic hydrocarbons (PAH) are a prominent substance class with a variety of applications in molecular materials science. Their electronic properties crucially depend on the bond topology in ways that are often highly non-intuitive. Here, we study, using density functional theory, the triplet states of four PAHs based on the biphenylene motif finding dramatically different triplet excitation energies for closely related isomeric structures. These differences are rationalised using a qualitative description of Clar sextets and Baird quartets, quantified in terms of nucleus independent chemical shifts, and represented graphically through a recently developed method for visualising chemical shielding tensors (VIST). These results are further interpreted in terms of a 2D rigid rotor model of aromaticity and through an analysis of the natural transition orbitals involved in the triplet excited states showing good consistency between the different viewpoints. We believe that this work constitutes an important step in consolidating these varying viewpoints of electronically excited states.


Author(s):  
Yi Zeng ◽  
Junfang Yang ◽  
Xiaoyan Zheng

To realize the precise munipulation of the optoelectrical properties of boron–nitrogen (B–N) unit-doped Polycyclic aromatic hydrocarbons (PAHs), unraveling the structure-property relationship behind is of vital importance. In this work, we...


Sign in / Sign up

Export Citation Format

Share Document