434. Some catalysed gas-phase reactions of aromatic hydrocarbons. Part IV. The polymethylbenzenes formed in the reactions of dimethyl ether with benzene, toluene, and the xylenes

Author(s):  
P. H. Given ◽  
D. Ll. Hammick
2009 ◽  
Vol 9 (1) ◽  
pp. 1873-1905
Author(s):  
A. W. H. Chan ◽  
K. E. Kautzman ◽  
P. S. Chhabra ◽  
J. D. Surratt ◽  
M. N. Chan ◽  
...  

Abstract. Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene, 1-methylnaphthalene (1-MN), 2-methylnaphthalene (2-MN), and 1,2-dimethylnaphthalene (1,2-DMN) is studied in the Caltech dual 28-m3 chambers. Under high-NOx conditions and aerosol mass loadings between 10 and 40 μg m


2019 ◽  
Vol 19 (3) ◽  
pp. 187-192
Author(s):  
E. Yu. Yakovleva ◽  
Yan Shanshan ◽  
Z. P. Pai

A capillary column with functionalized poly(1-trimethylsilyl-1-propyne) (PTMSP/N2O) was proposed to use for detecting products of catalytic pyrolysis of ethylbenzene. The capillary PTMSP/N2O column separated selectively light C1–C2 (methane, ethane, ethylene, acetylene) and aromatic (benzene, toluene, ethylbenzene, styrene) hydrocarbons. A procedure for gas-phase measuring weight fractions of light C1–C2 and aromatic hydrocarbons was developed. The analytical measurement range was 2.9·10–8 to 1.2·10–1 mg/mL for light C1–C2 components and 3.5·10–11 to 4.0·10–3 mg/mL for liquid components. The analytical error margin at repetition ranged from 1.9 % to 4.7 %.


Sign in / Sign up

Export Citation Format

Share Document