The steric course of the reaction of ethylene oxide with hydrogen halides in the gas phase

Author(s):  
Giuseppe Bellucci ◽  
Giancarlo Berti ◽  
Roberto Bianchini ◽  
Giovanni Ingrosso ◽  
Antonio Moroni
1982 ◽  
Vol 13 (4) ◽  
Author(s):  
G. BELLUCCI ◽  
G. BERTI ◽  
R. BIANCHINI ◽  
G. INGROSSO ◽  
A. MORONI

1968 ◽  
Vol 21 (10) ◽  
pp. 2385 ◽  
Author(s):  
RL Johnson ◽  
VR Stimson

The gas-phase decomposition of 2,3-dimethylbutan-2-ol into 2,3-dimethylbut-1-ene, 2,3-dimethylbut-2-ene, and water, catalysed by hydrogen bromide at 303-400�, is described. The rate is first-order in each reactant and the Arrhenius equation k2 = 1011.88 exp(-26490/RT) sec-l ml mole-1 is followed. The olefins appear to be in their equilibrium proportions. The effects of substitutions in the alcohol at Cα and Cβ on the rate are discussed.


1968 ◽  
Vol 21 (7) ◽  
pp. 1711
Author(s):  
DA Kairaitis ◽  
VR Stimson

Hydrogen bromide catalyses the decomposition of methyl formate into carbon monoxide and methanol at 390-460�. The radical chain decomposition product, methane, is formed in only a small amount that is further reduced by the addition of inhibitor. The reaction is homogeneous and molecular, is first order in each reactant, and follows the Arrhenius equation: k2 = 1012.50exp(-32200/RT)sec-1 ml mole-1 It is not reversed by added methanol.


2015 ◽  
Vol 656-657 ◽  
pp. 101-106 ◽  
Author(s):  
Karel Svoboda ◽  
Miloslav Hartman ◽  
Michael Pohořelý ◽  
Michal Šyc ◽  
Petra Kameníková ◽  
...  

The study is concentrated on thermodynamic analyses of gas desulfurization process (deep removal of H2S, COS, thiophene) by selected solid sorbents (ZnO, MnO, CexOy and La2O3) and on interferences caused by presence of hydrogen halides in a temperature range 500-1100 K. The results show that theoretically Ce2O3 and La2O3 are the best sorbents for sulfur compounds at temperatures over approx. 700 K. The CexOy, La2O3 and MnO based sorbents can suffer from significant interferences caused by higher concentrations of HCl and HF in gas phase. The thermodynamic equilibria suggest that removal of HCl (HF) by soda based sorbents at temperatures 650 – 850 K is practically without interferences from sulfur compounds. The common alkali carbonates are less suitable than the calcium based (Ca (OH)2, CaCO3) sorbents for deep removal of HF.


2017 ◽  
Vol 42 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Mohammad Khavani ◽  
Javad Karimi

The kinetics and mechanism of the thermal decomposition reaction of 3-oxetanone in the gas phase were studied using quantum chemical calculations. The major products of this reaction are formaldehyde, ketene, carbon monoxide, ethylene oxide, ethylene and methyl radical. Formaldehyde, ketene, carbon monoxide and ethylene oxide are the initial decomposition products and other species are the products of ethylene oxide decomposition. The results of B3LYP and QCISD(T) calculations reveal that thermal decomposition of 3-oxetanone to ethylene oxide and carbon monoxide is more probable than to formaldehyde and ketene from an energy viewpoint. Moreover, quantum theory of atoms in molecules and natural bond orbital analysis indicate that 3-oxetanone decomposition to formaldehyde, ketene, carbon monoxide and ethylene occurs via a concerted mechanism and bonds that are involved in the transition states have a covalent character. Moreover, the calculated changes in bond lengths in the transition states reveal that bond breaking and new bond formation occur asynchronously in a concerted mechanism.


1968 ◽  
Vol 21 (3) ◽  
pp. 687 ◽  
Author(s):  
JTD Cross ◽  
VR Stimson

Hydrogen bromide and hydrogen chloride catalyse the decomposition of methyl trimethylacetate into isobutene, carbon monoxide, and methanol at 370-442� and 450-48O�, respectively. The kinetic form, which is basically 1 : 1, is severely modified by the effect of methanol either produced in the reaction or added initially. Water or alcohols react with an intermediate in the catalysed decomposition of trimethylacetic acid or its methyl ester in esterification-like reactions; some of the resultant esters subsequently decompose to olefin and acid.


1966 ◽  
Vol 19 (3) ◽  
pp. 401 ◽  
Author(s):  
VR Stimson ◽  
EJ Watson

Hydrogen chloride catalyses the decomposition of t-butyl ethyl ether at 320-428�. Isobutene is quantitatively the product and the kinetic form is first order in the ether and in hydrogen chloride. The Arrhenius equation:��������� k, = 1012'16exp( -30,60O/RT) (sec-l ml mole-=) is followed. The mechanism of the reaction seems similar to those of other hydrogen halide catalysed decompositions of ethers and alcohols.


Sign in / Sign up

Export Citation Format

Share Document