Effect of amino acid substitution at the P3 and P4 subsites of fusion proteins on Kex2 protease activity

2000 ◽  
Vol 32 (1) ◽  
pp. 53 ◽  
Author(s):  
Yuji Suzuki ◽  
Nobue Ikeda ◽  
Eri Kataoka ◽  
Kazuhiro Ohsuye
Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 399 ◽  
Author(s):  
Justin J. Kurian ◽  
Renuk Lakshmanan ◽  
William M. Chmely ◽  
Joshua A. Hull ◽  
Jennifer C. Yu ◽  
...  

Adeno-associated viruses (AAVs) are being developed for gene delivery applications, with more than 100 ongoing clinical trials aimed at the treatment of monogenic diseases. In this study, the unique N-terminus of AAV capsid viral protein 1 (VP1u), containing a canonical group XIII PLA2 enzyme domain, was observed to also exhibit proteolytic activity. This protease activity can target casein and gelatin, two standard substrates used for testing protease function but does not self-cleave in the context of the capsid or target globular proteins, for example, bovine serum albumin (BSA). However, heated BSA is susceptible to VP1u-mediated cleavage, suggesting that disordered proteins are substrates for this protease function. The protease activity is partially inhibited by divalent cation chelators ethylenediaminetetraacetic acid (EDTA) and ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA), and human alpha-2-macroglobulin (A2M), a non-specific protease inhibitor. Interestingly, both the bovine pancreatic (group VIIA) and bee venom (group III) PLA2 enzymes also exhibit protease function against casein. This indicates that PLA2 groups, including VP1u, have a protease function. Amino acid substitution of the PLA2 catalytic motif (76HD/AN) in the AAV2 VP1u resulted in attenuation of protease activity, suggesting that the protease and PLA2 active sites are related. However, the amino acid substitution of histidine H38, which is not involved in PLA2 function, to alanine, also affects protease activity, suggesting that the active site/mechanism of the PLA2 and protease function are not identical.


Author(s):  
Renganayaki G. ◽  
Achuthsankar S. Nair

Sequence alignment algorithms and  database search methods use BLOSUM and PAM substitution matrices constructed from general proteins. These de facto matrices are not optimal to align sequences accurately, for the proteins with markedly different compositional bias in the amino acid.   In this work, a new amino acid substitution matrix is calculated for the disorder and low complexity rich region of Hub proteins, based on residue characteristics. Insights into the amino acid background frequencies and the substitution scores obtained from the Hubsm unveils the  residue substitution patterns which differs from commonly used scoring matrices .When comparing the Hub protein sequences for detecting homologs,  the use of this Hubsm matrix yields better results than PAM and BLOSUM matrices. Usage of Hubsm matrix can be optimal in database search and for the construction of more accurate sequence alignments of Hub proteins.


1996 ◽  
Vol 5 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Kunihiko Gekko ◽  
Youjiro Tamura ◽  
Eiji Ohmae ◽  
Hideyuki Hayashi ◽  
Hiroyuki Kagamiyama ◽  
...  

Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 447-452 ◽  
Author(s):  
Jeffrey S Thompson ◽  
Marilyn L Snow ◽  
Summer Giles ◽  
Leslie E McPherson ◽  
Michael Grunstein

Abstract Fourteen novel single-amino-acid substitution mutations in histone H3 that disrupt telomeric silencing in Saccharomyces cerevisiae were identified, 10 of which are clustered within the α1 helix and L1 loop of the essential histone fold. Several of these mutations cause derepression of silent mating locus HML, and an additional subset cause partial loss of basal repression at the GAL1 promoter. Our results identify a new domain within the essential core of histone H3 that is required for heterochromatin-mediated silencing.


Sign in / Sign up

Export Citation Format

Share Document