scholarly journals An ERK5-KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells

2021 ◽  
Author(s):  
Helen A Brown ◽  
Charles AC Williams ◽  
Houjiang Zhou ◽  
Diana Rios-Szwed ◽  
Rosalia Fernandez-Alonso ◽  
...  

The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative-feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.

2021 ◽  
Author(s):  
Helen A Brown ◽  
Charles AC Williams ◽  
Houjiang Zhou ◽  
Diana Rios-Szwed ◽  
Rosalia Fernandez-Alonso ◽  
...  

The ERK5 MAP kinase signalling pathway drives transcription of naive pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5-dependent ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative-feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern dynamic 2C gene transcription and mESC rejuvenation.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Lili An ◽  
Yanming Li ◽  
Yingjun Fan ◽  
Ning He ◽  
Fanlei Ran ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S62
Author(s):  
Luis Galán Palma ◽  
Roshana Thambyrajah ◽  
Antonella Fidanza ◽  
Lesley Forrester ◽  
Pablo Menéndez ◽  
...  

1994 ◽  
Vol 14 (5) ◽  
pp. 3108-3114
Author(s):  
M H Baron ◽  
S M Farrington

The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.


FEBS Letters ◽  
2017 ◽  
Vol 591 (18) ◽  
pp. 2879-2889
Author(s):  
Yuki Saito ◽  
Akira Kunitomi ◽  
Tomohisa Seki ◽  
Shugo Tohyama ◽  
Dai Kusumoto ◽  
...  

PLoS ONE ◽  
2009 ◽  
Vol 4 (1) ◽  
pp. e4268 ◽  
Author(s):  
Marcela Guzman-Ayala ◽  
Kian Leong Lee ◽  
Konstantinos J. Mavrakis ◽  
Paraskevi Goggolidou ◽  
Dominic P. Norris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document