scholarly journals The effects of amino acids on albumin synthesis by the isolated perfused rat liver

1972 ◽  
Vol 129 (4) ◽  
pp. 805-809 ◽  
Author(s):  
L. Kelman ◽  
S. J. Saunders ◽  
S. Wicht ◽  
L. Frith ◽  
A. Corrigall ◽  
...  

Albumin synthesis was measured in the isolated perfused rat liver by using the livers of both well-fed and starved rats. Starvation markedly decreased albumin synthesis. The livers from starved rats were unable to increase synthesis rates after the addition to the perfusates of single amino acids or the addition of both glucagon and tryptophan. Arginine, asparagine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine, added together to ten times their normal peripheral blood concentrations, restored synthesis rates to normal. The plasma aminogram (i.e. the relative concentrations, of amino acids) was altered by depriving rats of protein for 48h. The use of blood from the deprived rats as perfusate, instead of normal blood, decreased albumin synthesis rates significantly by livers obtained from well-fed rats. The addition of single amino acids, including the non-metabolizable amino acid, α-aminoisobutyric acid, to the above mixture increased albumin synthesis rates to normal values. It is concluded that amino acids play an important role in the control of albumin synthesis and that more than one mechanism is probably involved.

1973 ◽  
Vol 26 (11) ◽  
pp. 1191-1194 ◽  
Author(s):  
Ralph E. Kirsch ◽  
Lesley O’C. Frith ◽  
Robin H. Stead ◽  
Stuart J. Saunders

1973 ◽  
Vol 45 (3) ◽  
pp. 13P-13P
Author(s):  
A. S. Tavill ◽  
Joan Metcalfe ◽  
Elizabeth Black ◽  
R. Hoffenberg

1992 ◽  
Vol 281 (3) ◽  
pp. 593-595 ◽  
Author(s):  
C Hallbrucker ◽  
F Lang ◽  
W Gerok ◽  
D Häussinger

The effects of aniso-osmotically and amino-acid-induced cell-volume changes on bile flow and biliary taurocholate excretion were studied in isolated perfused rat liver. With taurocholate (100 microM) in the influent perfusate, hypo-osmotic exposure (225 mosmol/l) increased taurocholate excretion into bile and bile flow by 42 and 27% respectively, whereas inhibition by 32 and 47% respectively was observed after hyperosmotic (385 mosmol/l) exposure. The effects of aniso-moticity on taurocholate excretion into bile was observed throughout aniso-osmotic exposure, even after completion of volume-regulatory ion fluxes and were fully reversible upon re-exposure to normo-osmotic media. Hypo-osmotic cell swelling (225 mosmol/l) increased the Vmax. of taurocholate translocation from the sinusoidal compartment into bile about 2-fold. Also, cell swelling induced by glutamine and glycine stimulated both bile flow and biliary taurocholate excretion. There was a close relationship between the aniso-osmotically and amino-acid-induced change of cell volume and taurocholate excretion into bile. The data suggest that liver cell volume plays an important role in regulating bile-acid-dependent bile flow and biliary taurocholate excretion.


1990 ◽  
Vol 371 (1) ◽  
pp. 493-502 ◽  
Author(s):  
Matthias WETTSTEIN ◽  
Stephan VOM DAHL ◽  
Florian LANG ◽  
Wolfgang GEROK ◽  
Dieter HÄUSSINGER

Sign in / Sign up

Export Citation Format

Share Document