scholarly journals Synthesis, characterization and properties of uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)

1973 ◽  
Vol 133 (2) ◽  
pp. 227-241 ◽  
Author(s):  
P. K. Kindel ◽  
R. R. Watson

1. A method was developed for synthesizing UDP-apiose [uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5′-(α-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5′-(α-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [3H]UDP-[U-14C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the 3H/14C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100°C for 15min; (b) degraded at pH8.0 and 100°C for 3min; (c) used as a substrate in the enzymic synthesis of [14C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [3H]UDP-[U-14C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-14C]apiose and phosphate formed on alkaline degradation of UDP-[U-14C]apiose was α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-14C]apiose and phosphate formed on acid hydrolysis of α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-14C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-14C]apiose to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80°C, at pH8.0 and 25°C and at pH8.0 and 4°C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-14C]-apiose to d-[U-14C]apiose and UDP at pH3.0 and 40°C was 4.67min. After 20 days at pH6.2–6.6 and 4°C, 17% of the starting UDP-[U-14C]apiose was degraded to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-14C]apiose and UDP. After 120 days at pH6.4 and −20°C 2% of the starting UDP-[U-14C]apiose was degraded and 4% was hydrolysed.

2014 ◽  
Vol 56 (1) ◽  
pp. 101-106 ◽  
Author(s):  
Marian Jurzysta ◽  
Stanisław Burda ◽  
Wiesław Oleszek ◽  
Piotr Górski ◽  
Michał Płoszyński

The separation of saponins derived from <em>Medicago lupulina</em> L. flowers yielded two saponin fractions. The first one, made up of crystalline saponins, readily precipitable from water solution, was a mixture of three glycosides of soyasapogenol B. Acid hydrolysis of these saponins yielded soyasapogenol B and its three artifacts: soyasapogenols C. D and F. Xylose, rhamnose, galactose, glucose and glucuronic acid were found as sugar constituents. The second fraction obtained by cholesterol precipitation consisted of seven haemolytically active medicagenic acid glycosides. Their hydrolysis furnished medicagenic acid and glucose, xylose, rhamnose and traces of glucuronic acid.


1962 ◽  
Vol 40 (12) ◽  
pp. 2204-2213 ◽  
Author(s):  
A. Misaki ◽  
S. Kirkwood ◽  
J. V. Scaletti ◽  
F. Smith

The extracellular polysaccharide isolated from cultures of Xanthomonas oryzae is composed of D-glucose (5 molecular proportions), D-glucuronic acid (2 molecular proportions), and D-mannose (5 molecular proportions). Acid hydrolysis of this polysaccharide, which contains 0.3% combined pyruvic acid, yields 2-O-β-D-glucopyranosyluronic acid D-mannose, which has been characterized as its crystalline fully methylated β-glycoside. Hydrolysis of the methylated polysaccharide gives 2,3,4,6-tetra-O-methyl-D-mannose (3 molecular proportions), 2,3,4-tri-O-methyl-D-glucuronic acid (1 molecular proportion), 2,3,6-tri-O-methyl-D-glucose (4 molecular proportions), 3,4,6-tri-O-methyl-D-mannose (2 molecular proportions), 2,6-di-O-methyl-D-glucose (3 molecular proportions), 2,3-di-O-methyl-D-glucose (1 molecular proportion). The polyalcohol derived from the polysaccharide by periodate oxidation followed by sodium borohydride reduction gives upon acid hydrolysis glycerol (2 molecular proportions), erythritol (1 molecular proportion), and D-glucose (1 molecular proportion). The general structural significance of these findings is discussed.


1959 ◽  
Vol 37 (1) ◽  
pp. 29-34 ◽  
Author(s):  
G. A. Adams

Acid hydrolysis of extractive-free white spruce wood produced a number of neutral and acidic sugars and oligosaccharides. The acidic components were isolated and three of these were shown to be 4-O-methyl-D-glucuronic acid, 2-O-(4-O-methyl-α-D-glucopyranosyluronic acid)-D-xylose, and tentatively O-(4-O-methyl-α-D-glucopyranosyluronic acid)-(1→ 2)-O-β-D-xylopyranosyl-(1→ 4)-D-xylopyranose.


1957 ◽  
Vol 35 (2) ◽  
pp. 108-114 ◽  
Author(s):  
J. Schmorak ◽  
C. T. Bishop ◽  
G. A. Adams

Graded acid hydrolysis of a soluble wheat bran hemicellulose containing L-arabinose (50%), D-xylose (38.5%), and D-glucuronic acid (9.0%) preferentially removed the L-arabinose giving an insoluble acidic polysaccharide in approximately 25% yield by weight. Methylation studies, periodate oxidation data, and hypoiodite end group estimations showed that the degraded polysaccharide was composed of repeating units of 7-8 D-xylopyranose residues joined by β,1 → 4 linkages. To this repeating unit, one D-glucuronic acid unit was attached by a 1 → 2 glycosidic bond. The cellulolytic enzyme of Myrotheciumverrucaria, which is specific for β,1 → 4 glycosidic linkages, hydrolyzed the degraded polysaccharide although it had no effect on the parent hemicellulose


1986 ◽  
Vol 5 (1) ◽  
pp. 1-13 ◽  
Author(s):  
JÓZsef Béres ◽  
Yang-Chih Lee ◽  
Diana I. Brixner ◽  
Jay I. Olsen ◽  
Martin P. Schweizer

1962 ◽  
Vol 40 (2) ◽  
pp. 348-352 ◽  
Author(s):  
G. G. S. Dutton ◽  
A. M. Unrau

By determining the amount of formaldehyde produced on periodate oxidation of borohydride-reduced apple- and cherry-wood xylans the degree of polymerization was shown to be 155 and 100 respectively. Acid hydrolysis of the polyols obtained by periodate oxidation and borohydride reduction gave ethylene glycol in amounts indicating that these xylans have a small degree of branching. Mild acid hydrolysis of the polyols demonstrated that in these xylans D-glucuronic acid as well as 4-O-methyl-D-glucuronic acid was present and that some of the former occupied non-terminal positions.


Sign in / Sign up

Export Citation Format

Share Document