scholarly journals The mechanism of the reaction between glutathione and 1-menaphthyl sulphate catalysed by a glutathione S-transferase from rat liver

1973 ◽  
Vol 135 (4) ◽  
pp. 797-804 ◽  
Author(s):  
Brian Gillham

1. The glutathione S-transferase that catalyses the reaction of 1-menaphthyl (naphth-1-ylmethyl) sulphate with GSH was purified 76-fold from rat liver. 2. The properties of the purified enzyme were studied by gel filtration and isoelectric focusing. 3. The initial-velocity pattern in the absence of products and the product-inhibition pattern have been determined. These are consistent with an Ordered Bi Bi mechanism in which the GSH adds to the enzyme before 1-menaphthyl sulphate and the products are released in the order SO42−followed by S-(1-menaphthyl)glutathione. 4. Dead-end-inhibition studies with p-aminobenzoic acid, which has been shown to be competitive with GSH and non-competitive with 1-menaphthyl sulphate, support the suggestion that an Ordered Bi Bi mechanism is operative. 5. Values were determined for some of the dissociation and Michaelis constants for the reaction of the substrates and products with the enzyme. 6. It appears that S-(1-menaphthyl)glutathione activates the enzyme when the concentration of GSH is saturating and that of 1-menaphthyl sulphate is low (of the order of its Michaelis constant).

1976 ◽  
Vol 157 (1) ◽  
pp. 197-205 ◽  
Author(s):  
D F Brook ◽  
P J Large

1. Secondary-amine mono-oxygenase (proposed EC group 1.14.99.-) was partially purified from trimethylamine-grown Pseudomonas aminovorans by (NH4)2SO4 fractionation, gel filtration, hydrophobic chromatography on 5-aminopentylamino-Sepharose, and affinity chromatography on Sepharose-bound NADH. 2. Some problems in the affinity-chromatography step are discussed. 3. A steady-state kinetic analysis varying substrate, oxygen and electron-donor concentrations was performed, which, over the concentration range studied, gave a series of families of approximately parallel double-reciprocal plots. From secondary and tertiary plots, Michaelis constants of 0.160 mM, 0.086 mM and 0.121 mM were obtained for dimethylamine, NADPH and oxygen respectively. 4. Product-inhibition studies supported the postulated Hexa Uni Ping Pong (triple-transfer) reaction mechanism.


1965 ◽  
Vol 97 (1) ◽  
pp. 37-52 ◽  
Author(s):  
JF Morrison ◽  
E James

1. The forward and reverse reactions catalysed by ATP-creatine phosphotransferase have been studied kinetically at pH8.0 in the presence and absence of products, under conditions in which the free Mg(2+) concentration was maintained constant at 1mm. Thus at fixed pH the reaction may be considered as being bireactant and expressed as:MgATP(2-)+creatine(0)right harpoon over left harpoonMgADP(-)+phosphocreatine(2-)2. The initial-velocity pattern in the absence of products and the product-inhibition pattern have been determined. These are consistent with a random mechanism in which all steps are in rapid equilibrium except that concerned with the interconversion of the central ternary complexes, and in which two dead-end complexes (enzyme-MgADP-creatine and enzyme-MgATP-phosphocreatine) are formed. The results are in accord with previous suggestions that the enzyme possesses distinct sites for the combination of the nucleotide and guanidino substrates. 3. Values have been determined for the Michaelis and dissociation constants involved in the combination of each substrate with various enzyme forms. Although these values cannot be regarded as absolute, they appear to indicate that the presence of one substrate on the enzyme enhances the combination of the second substrate. In addition, it would seem that in the formation of the enzyme-MgADP-creatine complex the concentration of one reactant does not affect the combination of the other. This contrasts with the formation of the enzyme-MgATP-phosphocreatine complex, where each reactant hinders the combination of the other.


1969 ◽  
Vol 47 (2) ◽  
pp. 111-115 ◽  
Author(s):  
R. O. Hurst

An enzymic reaction mechanism characterized as 'di-Uni Iso Ping Pong' which has the same product inhibition pattern as the 'Ping Pong Bi Bi' mechanism but a different order for the release of products is discussed. A basis for differentiating the two mechanisms by dead-end inhibition studies is given.


1991 ◽  
Vol 278 (3) ◽  
pp. 835-841 ◽  
Author(s):  
L J Askonas ◽  
J W Ricigliano ◽  
T M Penning

Rat liver 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) (EC 1.1.1.50) is an NAD(P)(+)-dependent oxidoreductase that is potently inhibited at its active site by non-steroidal anti-inflammatory drugs (NSAIDs). Initial-velocity and product-inhibition studies performed in either direction at pH 7.0 are consistent with a sequential ordered Bi Bi mechanism in which pyridine nucleotide binds first and leaves last. This mechanism is supported by fluorescence titrations of the E-NADH complex, and by the failure to detect the binding of either [3H]androsterone or [3H]androstanedione to free enzyme by equilibrium dialysis. Dead-end inhibition studies with NSAIDs also support this mechanism. Initial-velocity studies with indomethacin show that this drug is an uncompetitive inhibitor against NAD+, but a potent competitive inhibitor against androsterone, indicating the ordered formation of an E.NAD+.indomethacin complex. Calculation of the individual rate constants reveals that the binding and release of pyridine nucleotide is rate-limiting and that isomerization of the central complex is favoured in the forward direction. Equilibrium dialysis experiments with [14C]indomethacin reveal the presence of two abortive NSAID complexes, a high-affinity ternary complex corresponding to E.NAD+.indomethacin (Kd = 1-2 microM for indomethacin) and a low-affinity binary complex corresponding to E.indomethacin (Kd = 22 microM for indomethacin). Since indomethacin has a low affinity for free enzyme, the formation of this abortive binary complex does not complicate kinetic measurements which are made in the presence of NAD+, but may contribute to the inhibition of the enzyme by NSAIDs. Using either pro-R-[4-3H]NADH or pro-S-[4-3H]NADH as cofactor, radiolabelled androsterone was formed only when the pro-R-[4-3H]NADH was used, confirming that purified 3 alpha-HSD is a Class A dehydrogenase.


1989 ◽  
Vol 261 (3) ◽  
pp. 935-943 ◽  
Author(s):  
C Forte-McRobbie ◽  
R Pietruszko

The kinetic mechanism of homogeneous human glutamic-gamma-semialdehyde dehydrogenase (EC 1.5.1.12) with glutamic gamma-semialdehyde as substrate was determined by initial-velocity, product-inhibition and dead-end-inhibition studies to be compulsory ordered with rapid interconversion of the ternary complexes (Theorell-Chance). Product-inhibition studies with NADH gave a competitive pattern versus varied NAD+ concentrations and a non-competitive pattern versus varied glutamic gamma-semialdehyde concentrations, whereas those with glutamate gave a competitive pattern versus varied glutamic gamma-semialdehyde concentrations and a non-competitive pattern versus varied NAD+ concentrations. The order of substrate binding and release was determined by dead-end-inhibition studies with ADP-ribose and L-proline as the inhibitors and shown to be: NAD+ binds to the enzyme first, followed by glutamic gamma-semialdehyde, with glutamic acid being released before NADH. The Kia and Kib values were 15 +/- 7 microM and 12.5 microM respectively, and the Ka and Kb values were 374 +/- 40 microM and 316 +/- 36 microM respectively; the maximal velocity V was 70 +/- 5 mumol of NADH/min per mg of enzyme. Both NADH and glutamate were product inhibitors, with Ki values of 63 microM and 15,200 microM respectively. NADH release from the enzyme may be the rate-limiting step for the overall reaction.


1986 ◽  
Vol 233 (3) ◽  
pp. 669-676 ◽  
Author(s):  
W L Gitomer ◽  
K F Tipton

Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.


1968 ◽  
Vol 108 (2) ◽  
pp. 161-167 ◽  
Author(s):  
F. Auricchio ◽  
C. B. Bruni ◽  
V. Sica

1. Centrifugation of rat liver acid glucosidase, which had been purified by adsorption on dextran gel, on a density gradient of sucrose showed the enzyme to be impure. 2. Preliminary purification of the enzyme before the gel filtration improved the final degree of purity of this preparation. Disc gel electrophoresis of this preparation showed a single band of protein. 3. The sedimentation co-efficient and the molecular weight determined on a sucrose gradient were 4·9–5·1s and 76000–83000 respectively for the rat liver enzyme, and 5·6s and 97000 for the acid α-glucosidase purified by means of the same procedure from the human kidney. 4. The Michaelis constants of rat liver and human kidney enzyme were 4·7×10−3m and 13·6×10−3m respectively with maltose as substrate. 5. The enzyme from both tissues was inhibited by tris and by erythritol. The inhibition of the rat liver acid glucosidase by erythritol was competitive.


1994 ◽  
Vol 297 (2) ◽  
pp. 327-333 ◽  
Author(s):  
Y S Kim ◽  
S W Kang

Malonyl-CoA synthetase catalyses the formation of malonyl-CoA directly from malonate and CoA with hydrolysis of ATP into AMP and PP1. The catalytic mechanism of malonyl-CoA synthetase from Bradyrhizobium japonicum was investigated by steady-state kinetics. Initial-velocity studies and the product-inhibition studies with AMP and PPi strongly suggested ordered Bi Uni Uni Bi Ping Pong Ter Ter system as the most probable steady-state kinetic mechanism of malonyl-CoA synthetase. Michaelis constants were 61 microM, 260 microM and 42 microM for ATP, malonate and CoA respectively, and the value for Vmax, was 11.2 microM/min. The t.l.c. analysis of the 32P-labelled products in a reaction mixture containing [gamma-32P]ATP in the absence of CoA showed that PPi was produced after the sequential addition of ATP and malonate. Formation of malonyl-AMP, suggested as an intermediate in the kinetically deduced mechanism, was confirmed by the analysis of 31P-n.m.r. spectra of an AMP product isolated from the 18O-transfer experiment using [18O]malonate. The 31P-n.m.r. signal of the AMP product appeared at 0.024 p.p.m. apart from that of [16O4]AMP, indicating that one atom of 18O transferred from [18O]malonate to AMP through the formation of malonyl-AMP. Formation of malonyl-AMP was also confirmed through the t.l.c. analysis of reaction mixture containing [alpha-32P]ATP. These results strongly support the ordered Bi Uni Uni Bi Pin Pong Ter Ter mechanism deduced from initial-velocity and product-inhibition studies.


1991 ◽  
Vol 275 (2) ◽  
pp. 327-334 ◽  
Author(s):  
C Montero ◽  
P Llorente

Adenine phosphoribosyltransferase (APRTase) and hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) have been purified from Artemia cysts and nauplii to apparent homogeneity, as determined by SDS-PAGE. The purification includes affinity chromatography on AMP-Sepharose, which binds both enzymes, and they are eluted at different 5-phospho-alpha-D-ribosyl diphosphate (PP-Rib-P) concentrations. The purified enzymes from Artemia cysts were similar to nauplii enzymes with respect to Mr in denaturing gel electrophoresis and gel filtration, pH and cation dependence and kinetic constants for substrates and inhibitors. By Sephadex G-100 filtration, the native Mr of the adenine and hypoxanthine-guanine enzymes was estimated to be Mr 28,000 and 66,000, respectively. Analysis by SDS-PAGE revealed that the APRTase was a dimer of Mr 15,000 sub-units and the HGPRTase, a tetramer of four identical Mr 19,000 sub-units. The pH profile of the HGPRTase shows two apparent buffer-independent pH optima, at 7.0 and 9.5, while the APRTase has just one, at about pH 8-9. The purine phosphoribosyltransferase activity with adenine was highest, about tenfold the HGPRTase activity with hypoxanthine and fivefold that with guanine. Both enzymes exhibited similar requirements for divalent cations, either Mg2+, Mn2+ or Zn2+, while Ca2+ is highly inhibitory. The Km values of APRTase for adenine and PP-Rib-P are 2 and 30 microM, respectively, and the Km values of HGPRTase for hypoxanthine, guanine and PP-Rib-P are less than 1, less than 1 and 15 microM, respectively. Plots of the reciprocal enzyme activities versus reciprocal concentrations of one substrate at several fixed levels of the second one yield a pattern of inhibition by guanine and hypoxanthine. Product-inhibition studies indicated that AMP is a competitive inhibitor with respect to PP-Rib-P in the APRTase reaction, while the HGPRTase shows a mixed inhibition by GMP.


1983 ◽  
Vol 215 (3) ◽  
pp. 669-676 ◽  
Author(s):  
R L Pajula

A kinetic analysis including initial-velocity and product-inhibition studies were performed with spermine synthase purified from bovine brain. The enzyme activity was assayed in the presence of 5′-methylthioadenosine phosphorylase as an auxiliary enzyme to prevent the accumulation of the inhibitory product, 5′-methylthioadenosine, and thus to obtain linearity of the reaction with time. Initial-velocity studies gave intersecting or converging linear double-reciprocal plots. No substrate inhibition by decarboxylated S-adenosylmethionine was observed at concentrations up to 0.4 mM. Apparent Michaelis constants were 60 microM for spermidine and 0.1 microM for decarboxylated S-adenosylmethionine. Spermine was a competitive product inhibitor with respect to decarboxylated S-adenosylmethionine, but a mixed one with respect to the other substrate, spermidine. 5′-Methylthioadenosine showed a mixed inhibition with both substrates, predominantly competitive with respect to decarboxylated S-adenosylmethionine and predominantly uncompetitive with respect to spermidine. The observed kinetic and inhibition patterns are consistent with a compulsory-order mechanism, where both substrates add to the enzyme before products can be released.


Sign in / Sign up

Export Citation Format

Share Document