brain histamine
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 18)

H-INDEX

33
(FIVE YEARS 1)

2022 ◽  
Vol 23 (2) ◽  
pp. 862
Author(s):  
Alessia Costa ◽  
Barbara Rani ◽  
Thomaz F. S. Bastiaanssen ◽  
Francesco Bonfiglio ◽  
Eoin Gunnigle ◽  
...  

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc−/−) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc−/−and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all of the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fumito Naganuma ◽  
Tadaho Nakamura ◽  
Hiroshi Kuroyanagi ◽  
Masato Tanaka ◽  
Takeo Yoshikawa ◽  
...  

AbstractDesigner receptor activated by designer drugs (DREADDs) techniques are widely used to modulate the activities of specific neuronal populations during behavioural tasks. However, DREADDs-induced modulation of histaminergic neurons in the tuberomamillary nucleus (HATMN neurons) has produced inconsistent effects on the sleep–wake cycle, possibly due to the use of Hdc-Cre mice driving Cre recombinase and DREADDs activity outside the targeted region. Moreover, previous DREADDs studies have not examined locomotor activity and aggressive behaviours, which are also regulated by brain histamine levels. In the present study, we investigated the effects of HATMN activation and inhibition on the locomotor activity, aggressive behaviours and sleep–wake cycle of Hdc-Cre mice with minimal non-target expression of Cre-recombinase. Chemoactivation of HATMN moderately enhanced locomotor activity in a novel open field. Activation of HATMN neurons significantly enhanced aggressive behaviour in the resident–intruder test. Wakefulness was increased and non-rapid eye movement (NREM) sleep decreased for an hour by HATMN chemoactivation. Conversely HATMN chemoinhibition decreased wakefulness and increased NREM sleep for 6 h. These changes in wakefulness induced by HATMN modulation were related to the maintenance of vigilance state. These results indicate the influences of HATMN neurons on exploratory activity, territorial aggression, and wake maintenance.


2021 ◽  
Author(s):  
Janet Best ◽  
Anna Marie Buchanan ◽  
Herman Frederik Nijhout ◽  
Parastoo Hashemi ◽  
Michael C. Reed

The coauthors have been working together for ten years on serotonin, dopamine, and histamine and their connection to neuropsychiatric illnesses. Hashemi has pioneered many new experimental techniques for measuring serotonin and histamine in real time in the extracellular space in the brain. Best, Reed, and Nijhout have been making mathematical models of brain metabolism to help them interpret Hashemi’s data. Hashemi demonstrated that brain histamine inhibits serotonin release, giving a direct mechanism by which inflammation can cause a decrease in brain serotonin and therefore depression. Many new biological phenomena have come out of their joint research including 1) there are two different reuptake mechanisms for serotonin; 2) the effect of the serotonin autoreceptors is not instantaneous and is long-lasting even when the extracellular concentrations have returned to normal; 3) that mathematical models of serotonin metabolism and histamine metabolism can explain Hashemi’s experimental data; 4) that variation in serotonin autoreceptors may be one of the causes of serotonin-linked mood disorders. Here we review our work in recent years for biological audiences, medical audiences, and researchers who work on mathematical modeling of biological problems. We discuss the experimental techniques, the creation and investigation of mathematical models, and the consequences for neuropsychiatric diseases.


2021 ◽  
Author(s):  
Fumito Naganuma ◽  
Tadaho Nakamura ◽  
Hiroshi Kuroyanagi ◽  
Masato Tanaka ◽  
Takeo Yoshikawa ◽  
...  

Abstract Designer receptor activated by designer drugs (DREADDs) techniques are widely used to modulate the activities of specific neuronal populations during behavioural tasks. However, DREADDs-induced modulation of histaminergic neurons in the tuberomammillary nucleus (HATMN neurons) has produced inconsistent effects on the sleep–wake cycle, possibly due to the use of Hdc-Cre mice driving Cre recombinase and DREADDs activity outside the targeted region. Moreover, previous DREADDs studies have not examined locomotor activity and aggressive behaviours, which are also regulated by brain histamine levels. In the present study, we investigated the effects of HATMN activation and inhibition on the locomotor activity, aggressive behaviours and sleep–wake cycle of Hdc-Cre mice with minimal non-target expression of Cre-recombinase. Chemoactivation of HATMN moderately enhanced locomotor activity in a novel open field. Activation of HATMN neurons significantly enhanced aggressive behaviour in the resident–intruder test. Wakefulness was increased and non-rapid eye movement (NREM) sleep decreased for an hour by HATMN chemoactivation. Conversely HATMN chemoinhibition decreased wakefulness and increased NREM sleep for 6 hours. These changes in wakefulness induced by HATMN modulation were related to vigilance status transition. These results indicate the influences of HATMN neurons on exploratory activity, territorial aggression, and wake maintenance.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 555
Author(s):  
Barbara Rani ◽  
Bruna Silva-Marques ◽  
Rob Leurs ◽  
Maria Beatrice Passani ◽  
Patrizio Blandina ◽  
...  

The ability of recognizing familiar conspecifics is essential for many forms of social interaction including reproduction, establishment of dominance hierarchies, and pair bond formation in monogamous species. Many hormones and neurotransmitters have been suggested to play key roles in social discrimination. Here we demonstrate that disruption or potentiation of histaminergic neurotransmission differentially affects short (STM) and long-term (LTM) social recognition memory. Impairments of LTM, but not STM, were observed in histamine-deprived animals, either chronically (Hdc−/− mice lacking the histamine-synthesizing enzyme histidine decarboxylase) or acutely (mice treated with the HDC irreversible inhibitor α-fluoromethylhistidine). On the contrary, restriction of histamine release induced by stimulation of the H3R agonist (VUF16839) impaired both STM and LTM. H3R agonism-induced amnesic effect was prevented by pre-treatment with donepezil, an acetylcholinesterase inhibitor. The blockade of the H3R with ciproxifan, which in turn augmented histamine release, resulted in a procognitive effect. In keeping with this hypothesis, the procognitive effect of ciproxifan was absent in both Hdc−/− and αFMH-treated mice. Our results suggest that brain histamine is essential for the consolidation of LTM but not STM in the social recognition test. STM impairments observed after H3R stimulation are probably related to their function as heteroreceptors on cholinergic neurons.


2021 ◽  
pp. 100317
Author(s):  
Barbara Rani ◽  
Andrea Santangelo ◽  
Adele Romano ◽  
Justyna Barbara Koczwara ◽  
Marzia Friuli ◽  
...  

Author(s):  
Lin Yang ◽  
Yi Wang ◽  
Zhong Chen

Epilepsy is a common neurological disorder characterized by repeated and spontaneous epileptic seizures, which is not well controlled by current medication. Traditional theory supports that epilepsy results from the imbalance of excitatory glutamate neurons and inhibitory GABAergic neurons. Recently, shreds of evidence from available clinical and preclinical researches suggest that histamine in the central nervous system plays an important role in the modulation of neural excitability and pathogenesis of epilepsy. Many histamine receptor ligands show positive response in animal epilepsy models, among which the H3R antagonist pitolisant even has shown a good anti-epileptic effect in clinical trials. New insights are focusing on the potential action of histamine receptors to control and treat epilepsy. This review summarizes the findings from animal and clinical researches on the role of brain histamine and histamine receptor in epilepsy. Importantly, we further provide perspectives on some possible research directions for future studies.


2020 ◽  
Vol 175 ◽  
pp. 108179
Author(s):  
Yo Yamada ◽  
Takeo Yoshikawa ◽  
Fumito Naganuma ◽  
Takako Kikkawa ◽  
Noriko Osumi ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 3996 ◽  
Author(s):  
Nermin Eissa ◽  
Sheikh Azimullah ◽  
Petrilla Jayaprakash ◽  
Richard L. Jayaraj ◽  
David Reiner ◽  
...  

The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer’s disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.


Sign in / Sign up

Export Citation Format

Share Document