scholarly journals Effect of hypophysectomy on the rates of protein synthesis and degradation in rat liver

1979 ◽  
Vol 178 (3) ◽  
pp. 725-731 ◽  
Author(s):  
R D Conde

The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.

1985 ◽  
Vol 230 (1) ◽  
pp. 117-123 ◽  
Author(s):  
R M Palmer ◽  
P A Bain ◽  
P J Reeds

Tyrosine balance and protein synthesis were studied during the same incubation in isolated rabbit forelimb muscles. From these measurements, protein degradation was calculated. Isolated muscles were usually in a state of negative amino acid balance, principally as a result of the 75% decrease in protein synthesis. Muscles from rabbits starved for 18 h had lower rates of both protein synthesis and degradation compared with muscles from normally fed rabbits. Intermittent mechanical stretching and the addition of insulin at 100 microunits/ml increased rates of both protein synthesis and degradation. Increases in the rate of protein synthesis were proportionately greater in the muscles from starved animals. In muscles from both fed and starved donors, increases in protein-synthesis rates owing to intermittent stretching and insulin were proportionately greater than the increases in degradation rates. For example, insulin increased the rate of protein synthesis in the muscles from starved donors by 111% and the rate of degradation by 31%. Insulin also increased the rate of protein synthesis when added at a higher concentration (100 munits/ml); at this concentration, however, the rate of protein degradation was not increased. The suppressive effect of insulin on high rates of protein degradation in other skeletal-muscle preparations may reflect a non-physiological action of the hormone.


1988 ◽  
Vol 255 (6) ◽  
pp. C754-C759 ◽  
Author(s):  
R. J. McAnulty ◽  
L. H. Staple ◽  
D. Guerreiro ◽  
G. J. Laurent

Unilateral pneumonectomy in rats causes compensatory growth of the remaining lung. This growth involves rapid production of collagen and noncollagen proteins, but the mechanisms for these changes have not been fully investigated. Rates of collagen metabolism were measured using previously validated in vivo methods. Six days after pneumonectomy, a threefold increase in the fractional rate of collagen synthesis was observed (control 11.8 +/- 0.9%/day, pneumonectomy 30.0 +/- 4.6%/day). Collagen degradation rates also increased but returned to normal more rapidly than the synthesis rates. These changes in synthesis and degradation resulted in a 75% increase in collagen content by 28 days. Although degradation of extracellular collagens was apparently increased, the fraction degraded intracellularly decreased by approximately 30%. Noncollagen protein synthesis and degradation rates both increased by approximately 80% (control 44.3 +/- 3.4%/day, pneumonectomy 80.3 +/- 10.2%/day) with a slightly greater increase in synthesis that led to an 85% increase in noncollagen protein content 28 days after pneumonectomy. The data obtained show dramatic changes in protein synthesis and degradation during compensatory lung growth and indicate extensive remodeling of structural elements in lung tissue. The changes for intracellular collagen degradation provide further evidence that this pathway may have an important role in regulating collagen deposition.


1986 ◽  
Vol 233 (1) ◽  
pp. 279-282 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
P H Sugden

Protein synthesis and degradation rates in diaphragms from fed or starved rats were compared in vivo and in vitro. For fed rats, synthesis rates in vivo were approximately twice those in vitro, but for starved rats rates were similar. Degradation rates were less in vivo than in vitro in diaphragms from either fed or starved rats.


1981 ◽  
Vol 194 (3) ◽  
pp. 771-782 ◽  
Author(s):  
J G Brown ◽  
P C Bates ◽  
M A Holliday ◽  
D J Millward

We have investigated the effects of thyroidectomy, hypophysectomy and 3,3′,5-tri-iodothyronine replacement on protein synthesis and degradation in skeletal muscle in vivo. Thyroidectomy resulted in a decrease in the rate of protein synthesis as a result of a loss of RNA. However, RNA activity, the rate of protein synthesis per unit of RNA, was not decreased. This was the case in both young growing rats and mature nongrowing rats. Tri-iodothyronine treatment of thyroidectomized rats increased protein synthesis by increasing RNA concentration without changes in RNA activity, and this occurred even when food intake was restricted to prevent any increase in growth. The rate of protein degradation was decreased by thyroidectomy and increased by tri-iodo-thyronine replacement in both animals fed ad libitum and food-restricted animals. Hypophysectomy decreased protein synthesis by decreasing both RNA concentration and activity. these changes were reversed by tri-iodothyronine treatment even in the presence of persistent marked hypoinsulinaemia. This indicates that tri-iodothyronine can activate athe translational phase of protein synthesis in muscle in the absence of significant quantities of insulin. However, tri-iodothyronine does not seem to be obligatory for the maintenance of normal RNA activity in muscle, since in the thyroidectomized rat, in which plasma insulin concentrations are normal, RNA activity is maintained. From a consideration of the magnitude of changes in RNA activity observed in these experiments, it would appear that alterations in rates of elongation as well as initiation are involved in the changes in RNA activity.


2021 ◽  
Author(s):  
Lei Li ◽  
Chun Pong Lee ◽  
Akila Wijerathna-Yapa ◽  
Martyna Broda ◽  
Marisa S. Otegui ◽  
...  

AbstractIdentification of autophagic protein cargo in plants by their abundance in autophagy related genes (ATG) mutants is complicated by changes in both protein synthesis and protein degradation. To detect autophagic cargo, we measured protein degradation rate in shoots and roots of Arabidopsis atg5 and atg11 mutant plants. These data show that less than a quarter of proteins changing in abundance are probable cargo and revealed roles of ATG11 and ATG5 in degradation of specific cytosol, chloroplast and ER-resident proteins, and a specialized role for ATG11 in degradation of proteins from mitochondria and chloroplasts. Our data support a role for autophagy in degrading glycolytic enzymes and the chaperonin containing T-complex polypeptide-1 complex. Autophagy induction by Pi limitation changed metabolic profiles and the protein synthesis and degradation rates of atg5 and atg11 plants. A general decrease in the abundance of amino acids and increase in several secondary metabolites in autophagy mutants was consistent with altered catabolism and changes in energy conversion caused by reduced degradation rate of specific proteins. Combining measures of changes in protein abundance and degradation rates, we also identify ATG11 and ATG5 associated protein cargo of low Pi induced autophagy in chloroplasts and ER-resident proteins involved in secondary metabolism.Single Sentence SummaryProtein cargo of autophagy in plants can be discovered by identifying proteins that increase in abundance and decrease in degradation rate in mutants deficient in autophagy machinery


1968 ◽  
Vol 109 (1) ◽  
pp. 87-91 ◽  
Author(s):  
S. Villa-Treviño ◽  
D. D. Leaver

1. Aflatoxin and the pyrrolizidine alkaloid retrorsine inhibited the incorporation of labelled amino acids into rat liver and plasma proteins in vivo. Inhibition was greater and detected earlier with retrorsine (1hr.) than with aflatoxin (3hr.). 2. Both toxins affected the liver ribosomal aggregates, causing increases in the proportion of monomers plus dimers. The effect of retrorsine was greater than that of aflatoxin. 3. Incorporation of labelled amino acids into proteins of cell-free preparations of liver from rats treated with aflatoxin was lower than in control preparations. The main site of inhibition appeared to be the ribosomes. 4. Both toxins inhibited the incorporation of orotate into liver nuclear RNA 1hr. after administration.


2002 ◽  
Vol 283 (6) ◽  
pp. E1105-E1112 ◽  
Author(s):  
Zhenqi Liu ◽  
Eugene J. Barrett

The body's protein mass not only provides architectural support for cells but also serves vital roles in maintaining their function and survival. The whole body protein pool, as well as that of individual tissues, is determined by the balance between the processes of protein synthesis and degradation. These in turn are regulated by interactions among hormonal, nutritional, neural, inflammatory, and other influences. Prolonged changes in either the synthetic or degradative processes (or both) that cause protein wasting increase morbidity and mortality. The application of tracer kinetic methods, combined with measurements of the activity of components of the cellular signaling pathways involved in protein synthesis and degradation, affords new insights into the regulation of both protein synthesis and breakdown in vivo. These insights, including those from studies of insulin, insulin-like growth factor I, growth hormone, and amino acid-mediated regulation of muscle and whole body protein turnover, provide opportunities to develop and test therapeutic approaches with promise to minimize or prevent these adverse health consequences.


1983 ◽  
Vol 212 (3) ◽  
pp. 649-653 ◽  
Author(s):  
A S Clark ◽  
W E Mitch

Rates of muscle protein synthesis and degradation measured in the perfused hindquarter were compared with those in incubated epitrochlearis muscles. With fed or starved mature rats, results without insulin treatment were identical. With insulin treatment, protein synthesis in perfused hindquarters was greater, though protein degradation was the same. Thus rates of muscle protein degradation estimated by these two methods in vitro correspond closely.


Sign in / Sign up

Export Citation Format

Share Document