scholarly journals Calcium ion-regulated thin filaments from vascular smooth muscle

1980 ◽  
Vol 185 (2) ◽  
pp. 355-365 ◽  
Author(s):  
S B Marston ◽  
R M Trevett ◽  
M Walters

Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 × 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.

1991 ◽  
Vol 280 (1) ◽  
pp. 33-38 ◽  
Author(s):  
R Makuch ◽  
K Birukov ◽  
V Shirinsky ◽  
R Dabrowska

Calponin and caldesmon, constituents of smooth-muscle thin filaments, are considered to be potential modulators of smooth-muscle contraction. Both of them interact with actin and inhibit ATPase activity of smooth- and skeletal-muscle actomyosin. Here we show that calponin and caldesmon could bind simultaneously to F-actin when used in subsaturating amounts, whereas each one used in excess caused displacement of the other from the complex with F-actin. Calponin was more effective than caldesmon in this competition: when F-actin was saturated with calponin the binding of caldesmon was eliminated almost completely, whereas even at high molar excess of caldesmon one-third of calponin (relative to the saturation level) always remained bound to actin. The inhibitory effects of low concentrations of calponin and caldesmon on skeletal-muscle actomyosin ATPase were additive, whereas the maximum inhibition of the ATPase attained at high concentration of each of them was practically unaffected by the other one. These data suggest that calponin and caldesmon cannot operate on the same thin filaments. CA(2+)-calmodulin competed with actin for calponin binding, and at high molar excess dissociated the calponin-actin complex and reversed the calponin-induced inhibition of actomyosin ATPase activity.


1979 ◽  
Vol 177 (2) ◽  
pp. 521-529 ◽  
Author(s):  
R J Grand ◽  
S V Perry ◽  
R A Weeks

1. An acidic protein with properties similar to those of troponin C from rabbit skeletal muscle has been shown to be present in bovine and rabbit smooth muscles, chicken gizzard and rabbit liver, kidney and lung. 2. A simple new method involving the use of organic solvents is described for the purification of the troponin C-like proteins from various tissues. 3. The troponin C-like proteins can be distinguished from rabbit skeletal-muscle toponin C by their electrophoretic behaviour on polyacrylamide gels at pH 8.3 in the presence and absence of Ca2+. The troponin C-like proteins have been shown to form complexes with rabbit skeletal-muscle troponin I that migrate on electrophoresis in polyacrylamide gels. 4. Behaviour on electrophoresis, amino acid analysis and the patterns of CNBr digests on polyacrylamide gels indicate that the troponin C-like proteins from bovine uterus and aorta, rabbit uterus, and liver and chicken gizzard are very similar to, if not identical with, bovine brain modulator protein. 5. With bovine cardiac muscle the organic-solvent method yields a preparation consisting of roughly similar amounts of troponin C and troponin C-like protein. 6. By the isotope-dilution technique, troponin C-like protein has been shown to represent 0.42% of the total protein in rabbit uterus. 7. In homogenates of smooth muscle, rabbit lung, kidney and brain, the troponin C-like proteins form a complex with other protein (or proteins) that requires Ca2+ for its formation and that is not dissociated in 9M-urea.


1990 ◽  
Vol 272 (2) ◽  
pp. 305-310 ◽  
Author(s):  
S Marston

Ca2(+)-regulated native thin filaments were extracted from sheep aorta smooth muscle. The caldesmon content determined by quantitative gel electrophoresis was 0.06 caldesmon molecule/actin monomer (1 caldesmon molecule per 16.3 actin monomers). Dissociation of caldesmon and tropomyosin from the thin filament and the depolymerization of actin was measured by sedimenting diluted thin filaments. Actin critical concentration was 0.05 microM at 10.1 and 0.13 at 10.05 compared with 0.5 microM for pure F-actin. Tropomyosin was tightly bound, with half-maximal dissociation at less than 0.3 microM thin filaments (actin monomer) under all conditions. Caldesmon dissociation was independent of tropomyosin and not co-operative. The concentration of thin filaments where 50% of the caldesmon was dissociated (CD50) ranged from 0.2 microM (actin monomer) at 10.03 to 8 microM at 10.16 in a 5 mM-MgCl2, pH 7.1, buffer. Mg2+, 25 mM at constant I, increased CD50 4-fold. CD50 was 4-fold greater at 10(-4) M-Ca2+ than at 10(-9) M-Ca2+. Aorta heavy meromyosin (HMM).ADP.Pi complex (2.5 microM excess over thin filaments) strongly antagonized caldesmon dissociation, but skeletal-muscle HMM.ADP.Pi did not. The behaviour of caldesmon in native thin filaments was indistinguishable from caldesmon in reconstituted synthetic thin filaments. The variability of Ca2(+)-sensitivity with conditions observed in thin filament preparations was shown to be related to dissociation of regulatory caldesmon from the thin filament.


1993 ◽  
Vol 265 (2) ◽  
pp. C379-C386 ◽  
Author(s):  
P. T. Szymanski ◽  
D. G. Ferguson ◽  
R. J. Paul

Polylysine (10-13 kDa) stimulates contraction in smooth muscle skinned fibers and activates actomyosin adenosinetriphosphatase (ATPase) activity in the absence of myosin light chain phosphorylation [P. T. Szymanski and R. J. Paul. Adv. Exp. Med. 304: 363-368, 1991; P. T. Szymanski, J. D. Strauss, G. Doerman, J. DiSalvo, and R. J. Paul. Am J. Physiol. 262 (Cell Physiol. 31): C1445-C1455, 1992]. To provide further information on the mechanism of polylysine action on contractility in smooth muscle, we investigated its effect on ATPase activity and conformation of purified gizzard myosin. We report here that polylysine directly stimulates myosin ATPase activity in a concentration-dependent manner. This stimulation could be completely abolished with the addition of heparin, a negatively charged heteropolysaccharide. Polylysine (10 microM) increases myosin ATPase activity to a level similar to that of myosin phosphorylation. Addition of 10 microM polylysine to phosphorylated myosin [with myosin light chain kinase and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), to approximately 1.9 mol P/mol myosin], however, did not further stimulate ATPase activity. At 0.2 M KCl (the salt concentration at which myosin exists primary in the 10S form), the addition of polylysine increases myosin ATPase activity to a level comparable to that of untreated myosin in 0.3 M KCl. These changes parallel the increase in solution viscosity elicited by polylysine. These results suggest that polylysine induces a transition in myosin conformation from the 10S to the 6S form, and this was confirmed by electron microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document