actin monomer
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 8)

H-INDEX

38
(FIVE YEARS 1)

2021 ◽  
Vol 28 ◽  
Author(s):  
Lili Gao ◽  
Mujie Huang ◽  
Hongkuan Deng ◽  
Qiuxiang Pang

: β-thymosin 4 (Tβ4) is a prototypical actin-monomer sequestering protein that plays an important role in mammalian cells and tissues. In vertebrates, Tβ4 is involved in various physiological and pathophysiological processes, such as angiogenesis, hair follicle and hair regeneration, nervous system development, inflammatory response, wound healing, tumour metastasis, and liver and heart protection. Additionally, thymosin domain-containing protein was discovered in invertebrates and was recently shown to be more homologous to Tβ4. However, the structural and functional properties are more complex and diverse than those of Tβ4. In this review article, we will discuss in detail the structural and functional aspects of β-thymosin in invertebrates.


2020 ◽  
Vol 6 (50) ◽  
pp. eaba5783
Author(s):  
Yi-Jun Liu ◽  
Ting Zhang ◽  
Daxiao Cheng ◽  
Junhua Yang ◽  
Sicong Chen ◽  
...  

Organelle transport requires dynamic cytoskeleton remodeling, but whether cytoskeletal dynamics are, in turn, regulated by organelles remains elusive. Here, we demonstrate that late endosomes, a type of prelysosomal organelles, facilitate actin-cytoskeleton remodeling via cytosolic translocation of immature protease cathepsin D (cathD) during microglia migration. After cytosolic translocation, late endosome–derived cathD juxtaposes actin filaments at the leading edge of lamellipodia. Suppressing cathD expression or blocking its cytosolic translocation impairs the maintenance but not the initiation of lamellipodial extension. Moreover, immature cathD balances the activity of the actin-severing protein cofilin to maintain globular-actin (G-actin) monomer pool for local actin recycling. Our study identifies cathD as a key lysosomal molecule that unconventionally contributes to actin cytoskeleton remodeling via cytosolic translocation during adenosine triphosphate–evoked microglia migration.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tommi Kotila ◽  
Hugo Wioland ◽  
Giray Enkavi ◽  
Konstantin Kogan ◽  
Ilpo Vattulainen ◽  
...  

AbstractThe ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes.


2019 ◽  
Author(s):  
Sonali Sengupta ◽  
Kanniah Rajasekaran ◽  
Niranjan Baisakh

Abstract Actin depolymerizing factors (ADFs) are small monomeric actin-binding proteins that alter the oligomeric state of cellular actin. Members of the ADF family can bind both the G-actin and F-actin in plants, and their functions are regulated by cellular pH, ionic strength and availability of other binding partners. Actin depolymerization activity is reportedly essential for plant viability. By binding to the ADP-bound form of actin, ADFs severe actin filaments and thereby provide more barbed filament ends for polymerization. They also increase the rate of dissociation of F-actin monomer by changing the helical twist of the actin filament. These two activities together make ADF the major regulator of actin dynamics in plant cell. Therefore, it is essential to measure the binding and depolymerization activity of the plant ADFs. Here, we present a simplified, streamlined step-by-step protocol to quickly measure these important functions of the ADF proteins in vitro.


2019 ◽  
Author(s):  
Sonali Sengupta ◽  
Kanniah Rajasekaran ◽  
Niranjan Baisakh

Abstract Actin depolymerizing factors (ADFs) are small monomeric actin-binding proteins that alter the oligomeric state of cellular actin. Members of the ADF family can bind both the G-actin and F-actin in plants, and their functions are regulated by cellular pH, ionic strength and availability of other binding partners. Actin depolymerization activity is reportedly essential for plant viability. By binding to the ADP-bound form of actin, ADFs severe actin filaments and thereby provide more barbed filament ends for polymerization. They also increase the rate of dissociation of F-actin monomer by changing the helical twist of the actin filament. These two activities together make ADF the major regulator of actin dynamics in plant cell. Therefore, it is essential to measure the binding and depolymerization activity of the plant ADFs. Here, we present a simplified, streamlined step-by-step protocol to quickly measure these important functions of the ADF proteins in vitro.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 959 ◽  
Author(s):  
Huaqin Li ◽  
Lianjie Hou ◽  
Yu Zhang ◽  
Fangyi Jiang ◽  
Yifan Zhu ◽  
...  

Skeletal muscle plays a crucial role in physical activity and in regulating body energy and protein balance. Myoblast proliferation, differentiation, and apoptosis are indispensable processes for myoblast myogenesis. Profilin 2a (PFN2a) is a ubiquitous actin monomer-binding protein and promotes lung cancer growth and metastasis through suppressing the nuclear localization of histone deacetylase 1 (HDAC1). However, how PFN2a regulates myoblast myogenic development is still not clear. We constructed a C2C12 mouse myoblast cell line overexpressing PFN2a. The CRISPR/Cas9 system was used to study the function of PFN2a in C2C12 myogenic development. We find that PFN2a suppresses proliferation and promotes apoptosis and consequentially downregulates C2C12 myogenic development. The suppression of PFN2a also decreases the amount of HDAC1 in the nucleus and increases the protein level of p53 during C2C12 myogenic development. Therefore, we propose that PFN2a suppresses C2C12 myogenic development via the p53 pathway. Si-p53 (siRNA-p53) reverses the PFN2a inhibitory effect on C2C12 proliferation and the PFN2a promotion effect on C2C12 apoptosis, and then attenuates the suppression of PFN2a on myogenic differentiation. Our results expand understanding of PFN2a regulatory mechanisms in myogenic development and suggest potential therapeutic targets for muscle atrophy-related diseases.


2018 ◽  
Author(s):  
Dyche Mullins ◽  
Peter Bieling ◽  
Daniel A Fletcher

The actin cytoskeleton comprises a set of filament networks that perform essential functions in eukaryotic cells. The idea that actin filaments incorporate monomers directly from solution forms both the “textbook picture” of filament elongation and a conventional starting point for quantitative modeling of cellular actin dynamics. Recent work, however, reveals that filaments created by two major regulators, the formins and the Arp2/3 complex, incorporate monomers delivered by nearby proteins. Specifically, actin enters Arp2/3-generated networks via binding sites on nucleation promoting factors clustered on membrane surfaces. Here, we describe three functions of this surface-associated actin monomer pool: (1) regulating network density via product inhibition of the Arp2/3 complex; (2) accelerating filament elongation as a distributive polymerase; and (3) converting profilin-actin into a substrate for the Arp2/3 complex. These linked functions control the architecture of branched networks and explain how capping protein enhances their growth.


2018 ◽  
Author(s):  
Dyche Mullins ◽  
Peter Bieling ◽  
Daniel A Fletcher

The actin cytoskeleton comprises a set of filament networks that perform essential functions in eukaryotic cells. The idea that actin filaments incorporate monomers directly from solution forms both the “textbook picture” of filament elongation and a conventional starting point for quantitative modeling of cellular actin dynamics. Recent work, however, reveals that filaments created by two major regulators, the formins and the Arp2/3 complex, incorporate monomers delivered by nearby proteins. Specifically, actin enters Arp2/3-generated networks via binding sites on nucleation promoting factors clustered on membrane surfaces. Here, we describe three functions of this surface-associated actin monomer pool: (1) regulating network density via product inhibition of the Arp2/3 complex; (2) accelerating filament elongation as a distributive polymerase; and (3) converting profilin-actin into a substrate for the Arp2/3 complex. These linked functions control the architecture of branched networks and explain how capping protein enhances their growth.


Sign in / Sign up

Export Citation Format

Share Document