scholarly journals Epitope mapping for the monoclonal antibody that inhibits intramolecular electron transfer in flavocytochrome b2

2003 ◽  
Vol 373 (1) ◽  
pp. 115-123 ◽  
Author(s):  
K. H. Diêp LÊ ◽  
Martine MAYER ◽  
Florence LEDERER

Flavocytochrome b2 (yeast l-lactate dehydrogenase) carries one FMN and one protohaem IX on each of its four subunits. The prosthetic groups are bound to separate domains, the haem domain (residues 1–99) and the flavin domain (residues 100–485), which interact for electron transfer between lactate-reduced FMN and haem b2; in vivo, the latter reduces cytochrome c. In the crystal structure, one haem domain out of two is mobile. Previously we have described a monoclonal antibody, raised against the tetramer, that only recognizes the native haem domain and prevents electron transfer between flavin and haem, while having no effect on flavin reduction by the substrate [Miles, Lederer and Lê (1998) Biochemistry 37, 3440–3448]. In order to understand the structural basis of the uncoupling between the domains, we proceeded to site-directed mutagenesis, so as to map the epitope on the surface of the haem domain. We analysed the effects of 14 mutations at 12 different positions, located mostly in the domain interface or at its edge; we also analysed the effect of replacing protohaem IX with its dimethyl ester. We used as criteria the antibody-mediated inhibition of cytochrome c reduction by flavocytochrome b2, competitive ELISA tests and surface plasmon resonance. We have thus defined a minimal epitope surface on the haem domain; it encompasses positions 63, 64, 65, 67, 69 and 70 and one or both haem propionates. When the haem and flavin domains are docked for electron transfer, the 65, 67 and 70 side chains, as well as the haem propionates, are excluded from solvent. The present results thus indicate that, when bound, the antibody acts as a wedge between the domains and constitutes a physical barrier to electron transfer.

1993 ◽  
Vol 291 (1) ◽  
pp. 89-94 ◽  
Author(s):  
P White ◽  
F D C Manson ◽  
C E Brunt ◽  
S K Chapman ◽  
G A Reid

The two distinct domains of flavocytochrome b2 (L-lactate:cytochrome c oxidoreductase) are connected by a typical hinge peptide. The amino acid sequence of this interdomain hinge is dramatically different in flavocytochromes b2 from Saccharomyces cerevisiae and Hansenula anomala. This difference in the hinge is believed to contribute to the difference in kinetic properties between the two enzymes. To probe the importance of the hinge, an interspecies hybrid enzyme has been constructed comprising the bulk of the S. cerevisiae enzyme but containing the H. anomala flavocytochrome b2 hinge. The kinetic properties of this ‘hinge-swap’ enzyme have been investigated by steady-state and stopped-flow methods. The hinge-swap enzyme remains a good lactate dehydrogenase as is evident from steady-state experiments with ferricyanide as acceptor (only 3-fold less active than wild-type enzyme) and stopped-flow experiments monitoring flavin reduction (2.5-fold slower than in wild-type enzyme). The major effect of the hinge-swap mutation is to lower dramatically the enzyme's effectiveness as a cytochrome c reductase; kcat. for cytochrome c reduction falls by more than 100-fold, from 207 +/- 10 s-1 (25 degrees C, pH 7.5) in the wild-type enzyme to 1.62 +/- 0.41 s-1 in the mutant enzyme. This fall in cytochrome c reductase activity results from poor interdomain electron transfer between the FMN and haem groups. This can be demonstrated by the fact that the kcat. for haem reduction in the hinge-swap enzyme (measured by the stopped-flow method) has a value of 1.61 +/- 0.42 s-1, identical with the value for cytochrome c reduction and some 300-fold lower than the value for the wild-type enzyme. From these and other kinetic parameters, including kinetic isotope effects with [2-2H]lactate, we conclude that the hinge plays a crucial role in allowing efficient electron transfer between the two domains of flavocytochrome b2.


Biochemistry ◽  
1994 ◽  
Vol 33 (29) ◽  
pp. 8678-8685 ◽  
Author(s):  
Rui-Qin Liu ◽  
Mark A. Miller ◽  
Gye Won Han ◽  
Seung Hahm ◽  
Lois Geren ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Mahesh Chandra Patra ◽  
Sukanta Kumar Pradhan ◽  
Surya Narayan Rath ◽  
Jitendra Maharana

Acidithiobacillus ferrooxidans obtains its metabolic energy by reducing extracellular ferrous iron with either downhill or uphill electron transfer pathway. The downhill electron transfer pathway has been substantially explored in recent years to underpin the mechanism of iron respiration but, there exists a wide gap in our present understanding on how these proteins are organized as a supercomplex and what sort of atomic level interactions governs their stability in the iron respiratory chain. In the present study, we aimed at unraveling the structural basis of supermolecular association of respirasomes using protein threading, protein-protein docking, and molecular dynamics (MD) simulation protocols. Our results revealed that Phe312 of outer membrane cytochrome c plays a crucial role in diffusing electrons from heme C group to Asp73 of rusticyanin. In line with the previous experimental results, His143 of rusticyanin was found to have a stable interaction with Glu121 of periplasmic cytochrome c4. Cytochrome c4 interacts with subunit B of cytochrome c oxidase through Lys146 and Thr148 of the conserved hydrophobic/aromatic motif 145-WKWTFSY-151 to attain stability during simulation. Phe468 of cytochrome c oxidase was found indispensable for stabilizing heme aa3 during MD simulation. Taken together, we conclude that the molecular interactions of charged and hydrophobic amino acids present on the surface of each respirasome form a hypothetical electron wire in the iron respiratory supercomplex of A. ferrooxidans.


1992 ◽  
Vol 70 (5) ◽  
pp. 301-308 ◽  
Author(s):  
M. Crinson ◽  
P. Nicholls

Cytochrome c oxidase oxidizes several hydrogen donors, including TMPD (N,N,N′,N′-tetramethyl-p-phenylenediamine) and DMPT (2-amino-6,7-dimethyl-5,6,7,8-tetrahydropterine), in the absence of the physiological substrate cytochrome c. Maximal enzyme turnovers with TMPD and DMPT alone are rather less than with cytochrome c, but much greater than previously reported if extrapolated to high reductant levels and (or) to 100% reduction of cytochrome a in the steady state. The presence of cytochrome c is, therefore, not necessary for substantial intramolecular electron transfer to occur in the oxidase. A direct bimolecular reduction of cytochrome a by TMPD is sufficient to account for the turnover of the enzyme. CuA may not be an essential component of the TMPD oxidase pathway. DMPT oxidation seems to occur more rapidly than the DMPT – cytochrome a reduction rate and may therefore imply mediation of CuA. Both "resting" and "pulsed" oxidases contain rapid-turnover and slow-turnover species, as determined by aerobic steady-state reduction of cytochrome a by TMPD. Only the "rapid" fraction (≈70% of the total with resting and ≈85% of the total with pulsed) is involved in turnover. We conclude that electron transfer to the a3CuB binuclear centre can occur either from cytochrome a or CuA, depending upon the redox state of the binuclear centre. Under steady-state conditions, cytochrome a and CuA may not always be in rapid equilibrium. Rapid enzyme turnover by either natural or artificial substrates may require reduction of both and two pathways of electron transfer to the a3CuB centre.Key words: cytochrome c oxidase, cytochrome a, respiration, cyanide, stopped flow.


Sign in / Sign up

Export Citation Format

Share Document