scholarly journals The central part of the 5.8 S rRNA is differently arranged in programmed and free human ribosomes

2005 ◽  
Vol 387 (1) ◽  
pp. 139-145 ◽  
Author(s):  
Dmitri GRAIFER ◽  
Maxim MOLOTKOV ◽  
Anna EREMINA ◽  
Aliya VEN'YAMINOVA ◽  
Marina REPKOVA ◽  
...  

A sequence-specific modification of the human 5.8 S rRNA in isolated 60 S subunits, non-programmed 80 S ribosomes and ribosomes complexed with mRNA and tRNAs was studied with the use of a derivative of the nonaribonucleotide UCUGUGUUU bearing a perfluorophenylazide group on the C-5 atom of the 5′-terminal uridine. Part of the oligonucleotide moiety of the derivative was complementary to the 5.8 S rRNA sequence ACACA in positions 82–86 flanked by two guanines at the 5′-terminus. The target for the cross-linking was identified as nucleotide G89 on the 5.8 S RNA. In addition, several ribosomal proteins were modified by the oligonucleotide derivative bound to the 5.8 S rRNA and proteins L6 and L8 were among them. Application of these results to known cryo-electron microscopy images of eukaryotic 60 S subunits made it possible to suggest that the central part of the 5.8 S rRNA containing the sequence 82–86 and proteins L6 and L8 are located at the base of the L1 stalk of the 60 S subunit. The efficacy of cross-linking in non-programmed 80 S ribosomes was much lower than in isolated 60 S subunits and in programmed 80 S ribosomes. We suggest that the difference in the accessibilities of the central part of the 5.8 S rRNA in the programmed and non-programmed 80 S ribosomes is caused by a conformational switch that seems to be required to dissociate the 80 S ribosomes into the subunits after termination of translation to allow initiation of translation of a new template.

Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


2021 ◽  
Author(s):  
Philipp Milkereit ◽  
Gisela Pöll ◽  
Michael Pilsl ◽  
Joachim Griesenbeck ◽  
Herbert Tschochner

In yeast and human cells many of the ribosomal proteins (r-proteins) are required for the stabilisation and productive processing of rRNA precursors. Functional coupling of r-protein assembly with the stabilisation and maturation of subunit precursors potentially promotes the production of ribosomes with defined composition. To further decipher mechanisms of such an intrinsic quality control pathway we analysed here the contribution of three yeast large ribosomal subunit r-proteins for intermediate nuclear subunit folding steps. Structure models obtained from single particle cryo-electron microscopy analyses provided evidence for specific and hierarchic effects on the stable positioning and remodelling of large ribosomal subunit domains. Based on these structural and previous biochemical data we discuss possible mechanisms of r-protein dependent hierarchic domain arrangement and the resulting impact on the stability of misassembled subunits.


Sign in / Sign up

Export Citation Format

Share Document