scholarly journals A novel method for observing proteins in vivo using a small fluorescent label and multiphoton imaging

2005 ◽  
Vol 390 (3) ◽  
pp. 787-790 ◽  
Author(s):  
Stanley W. Botchway ◽  
Ignasi Barba ◽  
Randolf Jordan ◽  
Rebecca Harmston ◽  
Peter M. Haggie ◽  
...  

A novel method for the fluorescence detection of proteins in cells is described in the present study. Proteins are labelled by the selective biosynthetic incorporation of 5-hydroxytryptophan and the label is detected via selective two-photon excitation of the hydroxyindole and detection of its fluorescence emission at 340 nm. The method is demonstrated in this paper with images of a labelled protein in yeast cells.

2008 ◽  
Vol 47 (11) ◽  
pp. 1913 ◽  
Author(s):  
M. Sheeba ◽  
M. Rajesh ◽  
S. Mathew ◽  
V. P. N. Nampoori ◽  
C. P. G. Vallabhan ◽  
...  

2020 ◽  
Vol 45 (10) ◽  
pp. 2704
Author(s):  
Ting Wu ◽  
Jiuling Liao ◽  
Jia Yu ◽  
Yufeng Gao ◽  
Hui Li ◽  
...  

Bone ◽  
2015 ◽  
Vol 74 ◽  
pp. 134-139 ◽  
Author(s):  
Hiroshige Sano ◽  
Junichi Kikuta ◽  
Masayuki Furuya ◽  
Naoki Kondo ◽  
Naoto Endo ◽  
...  

2008 ◽  
Vol 13 (2) ◽  
pp. 024014 ◽  
Author(s):  
Sijia Lu ◽  
Ji-Yao Chen ◽  
Yu Zhang ◽  
Jiong Ma ◽  
Pei-Nan Wang ◽  
...  

2017 ◽  
Author(s):  
Ahmed M. Hassan ◽  
Xu Wu ◽  
Jeremy W. Jarrett ◽  
Shihan Xu ◽  
David R. Miller ◽  
...  

AbstractDeep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep multiphoton imaging has never before been demonstrated. Here we characterize the multiphoton properties of three pdot variants (CNPPV, PFBT, and PFPV) and demonstrate deep imaging of cortical microvasculature in C57 mice. Specifically, we measure the two-versus three-photon power dependence of these pdots and observe a clear three-photon excitation signature at wavelengths longer than 1300 nm, and a transition from two-photon to three-photon excitation within a 1060 – 1300 nm excitation range. Furthermore, we show that pdots enable in vivo two-photon imaging of cerebrovascular architecture in mice up to 850 μm beneath the pial surface using 800 nm excitation. In contrast with traditional multiphoton probes, we also demonstrate that the broad multiphoton absorption spectrum of pdots permits imaging at longer wavelengths (λex = 1,060 and 1225 nm). These wavelengths approach an ideal biological imaging wavelength near 1,300 nm and confer compatibility with a high-power ytterbium-fiber laser and a high pulse energy optical parametric amplifier, resulting in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths of 900 μm and 1300 μm. Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, which will undoubtedly unlock the ability to interrogate deep structures in vivo.


2014 ◽  
Vol 26 (1) ◽  
pp. 25-30
Author(s):  
Yoko Mizuta ◽  
Daisuke Kurihara ◽  
Tetsuya Higashiyama

Sign in / Sign up

Export Citation Format

Share Document