scholarly journals Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria

2008 ◽  
Vol 412 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Nadeene Parker ◽  
Charles Affourtit ◽  
Antonio Vidal-Puig ◽  
Martin D. Brand

Leak of protons into the mitochondrial matrix during substrate oxidation partially uncouples electron transport from phosphorylation of ADP, but the functions and source of basal and inducible proton leak in vivo remain controversial. In the present study we describe an endogenous activation of proton conductance in mitochondria isolated from rat and mouse skeletal muscle following addition of respiratory substrate. This endogenous activation increased with time, required a high membrane potential and was diminished by high concentrations of serum albumin. Inhibition of this endogenous activation by GDP [classically considered specific for UCPs (uncoupling proteins)], carboxyatractylate and bongkrekate (considered specific for the adenine nucleotide translocase) was examined in skeletal muscle mitochondria from wild-type and Ucp3-knockout mice. Proton conductance through endogenously activated UCP3 was calculated as the difference in leak between mitochondria from wild-type and Ucp3-knockout mice, and was found to be inhibited by carboxyatractylate and bongkrekate, but not GDP. Proton conductance in mitochondria from Ucp3-knockout mice was strongly inhibited by carboxyatractylate, bongkrekate and partially by GDP. We conclude the following: (i) at high protonmotive force, an endogenously generated activator stimulates proton conductance catalysed partly by UCP3 and partly by the adenine nucleotide translocase; (ii) GDP is not a specific inhibitor of UCP3, but also inhibits proton translocation by the adenine nucleotide translocase; and (iii) the inhibition of UCP3 by carboxyatractylate and bongkrekate is likely to be indirect, acting through the adenine nucleotide translocase.

2005 ◽  
Vol 392 (2) ◽  
pp. 353-362 ◽  
Author(s):  
Martin D. Brand ◽  
Julian L. Pakay ◽  
Augustine Ocloo ◽  
Jason Kokoszka ◽  
Douglas C. Wallace ◽  
...  

The basal proton conductance of mitochondria causes mild uncoupling and may be an important contributor to metabolic rate. The molecular nature of the proton-conductance pathway is unknown. We show that the proton conductance of muscle mitochondria from mice in which isoform 1 of the adenine nucleotide translocase has been ablated is half that of wild-type controls. Overexpression of the adenine nucleotide translocase encoded by the stress-sensitive B gene in Drosophila mitochondria increases proton conductance, and underexpression decreases it, even when the carrier is fully inhibited using carboxyatractylate. We conclude that half to two-thirds of the basal proton conductance of mitochondria is catalysed by the adenine nucleotide carrier, independently of its ATP/ADP exchange or fatty-acid-dependent proton-leak functions.


2000 ◽  
Vol 351 (2) ◽  
pp. 307-311 ◽  
Author(s):  
Susana CADENAS ◽  
Julie A. BUCKINGHAM ◽  
Julie ST-PIERRE ◽  
Keith DICKINSON ◽  
Robert B. JONES ◽  
...  

Mitochondrial proton leak in rat muscle is responsible for approx. 15% of the standard metabolic rate, so its modulation could be important in regulating metabolic efficiency. We report in the present paper that physiological concentrations of AMP (K0.5 = 80µM) increase the resting respiration rate and double the proton conductance of rat skeletal-muscle mitochondria. This effect is specific for AMP. AMP also doubles proton conductance in skeletal-muscle mitochondria from an ectotherm (the frog Rana temporaria), suggesting that AMP activation is not primarily for thermogenesis. AMP activation in rat muscle mitochondria is unchanged when uncoupling protein-3 is doubled by starvation, indicating that this protein is not involved in the AMP effect. AMP activation is, however, abolished by inhibitors and substrates of the adenine nucleotide translocase (ANT), suggesting that this carrier (possibly the ANT1 isoform) mediates AMP activation. AMP activation of ANT could be important for physiological regulation of metabolic rate.


2000 ◽  
Vol 348 (1) ◽  
pp. 209-213 ◽  
Author(s):  
Susana CADENAS ◽  
Martin D. BRAND

During oxidative phosphorylation most of the protons pumped out to the cytosol across the mitochondrial inner membrane return to the matrix through the ATP synthase, driving ATP synthesis. However, some of them leak back to the matrix through a proton-conductance pathway in the membrane. When the ATP synthase is inhibited with oligomycin and ATP is not being synthesized, all of the respiration is used to drive the proton leak. We report here that Mg2+ inhibits the proton conductance in rat skeletal-muscle mitochondria. Addition of Mg2+ inhibited both oligomycin-inhibited respiration and the proton conductance, while removal of Mg2+ using EDTA activated these processes. The proton conductance was inhibited by more than 80% as free Mg2+ was raised from 25 nM to 220 μM. Half-maximal inhibition occurred at about 1 μM free Mg2+, which is close to the contaminating free Mg2+ concentration in our incubations in the absence of added magnesium chelators. ATP, GTP, CTP, TTP or UTP at a concentration of 1 mM increased the oligomycin-inhibited respiration rate by about 50%. However, these NTP effects were abolished by addition of 2 mM Mg2+ and any NTP-stimulated proton conductance was explained completely by chelation of endogenous free Mg2+. The corresponding nucleoside diphosphates (ADP, GDP, CDP, TDP or UDP) at 1 mM had no effect on oligomycin-inhibited respiration. We conclude that proton conductance in rat skeletal-muscle mitochondria is very sensitive to free Mg2+ concentration but is insensitive to NTPs or NDPs at 1 mM.


2001 ◽  
Vol 277 (4) ◽  
pp. 2773-2778 ◽  
Author(s):  
Susana Cadenas ◽  
Karim S. Echtay ◽  
James A. Harper ◽  
Mika B. Jekabsons ◽  
Julie A. Buckingham ◽  
...  

2018 ◽  
Vol 28 (12) ◽  
pp. 2494-2504 ◽  
Author(s):  
Sune Dandanell ◽  
Anne-Kristine Meinild-Lundby ◽  
Andreas B. Andersen ◽  
Paul F. Lang ◽  
Laura Oberholzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document