scholarly journals Influence of phospholipids on the activity of phosphate-dependent glutaminase in extracts of rat liver mitochondria

1983 ◽  
Vol 214 (2) ◽  
pp. 649-652 ◽  
Author(s):  
J D McGivan ◽  
N M Bradford

Liver glutaminase can be solubilized from frozen-and-thawed mitochondria by treatment with phospholipase A2. Solubilization by this technique markedly changes the kinetic properties of the enzyme. The properties of the membrane-bound form of the enzyme are partially restored by adding phosphatidylcholine or phosphatidylethanolamine to the phospholipase extract. It is concluded that the kinetic properties of liver glutaminase are a function of the interaction of this enzyme with membrane phospholipids.

Author(s):  
H. van den Bosch ◽  
J.G.N. de Jong ◽  
A.J. Aarsman

1969 ◽  
Vol 114 (2) ◽  
pp. 215-225 ◽  
Author(s):  
D. G. Nicholls ◽  
P. B. Garland

1. The factors capable of affecting the rate of isocitrate oxidation in intact mitochondria include the rate of isocitrate penetration, the activity of the NAD-specific and NADP-specific isocitrate dehydrogenases, the activity of the transhydrogenase acting from NADPH to NAD+, the rate of NADPH oxidation by the reductive synthesis of glutamate and the activity of the respiratory chain. A quantitative assessment of these factors was made in intact mitochondria. 2. The kinetic properties of the NAD-specific and NADP-specific isocitrate dehydrogenases extracted from rat liver mitochondria were examined. 3. The rate of isocitrate oxidation through the respiratory chain in mitochondria with coupled phosphorylation is approximately equal to the maximal of the NAD-specific isocitrate dehydrogenase but at least ten times as great as the transhydrogenase activity from NADPH to NAD+. 4. It is concluded that the energy-dependent inhibition of isocitrate oxidation by palmitoylcarnitine oxidation is due to an inhibition of the NAD-specific isocitrate dehydrogenase. 5. Kinetic studies of NAD-specific isocitrate dehydrogenase demonstrated that its activity could be inhibited by one or more of the following: an increased reduction of mitochondrial NAD, an increased phosphorylation of mitochondrial adenine nucleotides or a fall in the mitochondrial isocitrate concentration. 6. Uncoupling agents stimulate isocitrate oxidation by an extent equal to the associated stimulation of transhydrogenation from NADPH to NAD+. 7. A technique is described for continuously measuring with a carbon dioxide electrode the synthesis of glutamate from isocitrate and ammonia.


1969 ◽  
Vol 114 (3) ◽  
pp. 597-610 ◽  
Author(s):  
D. Shepherd ◽  
P. B. Garland

1. Citrate synthase (EC 4.1.3.7) was purified 750-fold from rat liver. 2. Measurements of the Michaelis constants for the substrates of citrate synthase gave values of 16μm for acetyl-CoA and 2μm for oxaloacetate. Each value is independent of the concentration of the other substrate. 3. The inhibition of citrate synthase by ATP, ADP and AMP is competitive with respect to acetyl-CoA. With respect to oxaloacetate the inhibition by AMP is competitive, but the inhibition by ADP and ATP is mixed, being partially competitive. 4. At low concentrations of both substrates the inhibition by ATP is sigmoidal and a Hill plot exhibits a slope of 2·5. 5. The pH optimum of the enzyme is 8·7, and is not significantly affected by ATP. 6. Mg2+ inhibits citrate synthase slightly, but relieves the inhibition caused by ATP in a complex manner. 7. At constant total adenine nucleotide concentration made up of various proportions of ATP, ADP and AMP, the activity of citrate synthase is governed by the concentration of the sum of the energy-rich phosphate bonds of ADP and ATP. 8. The sedimentation coefficient of the enzyme, as measured by activity sedimentation, is 6·3s, equivalent to molecular weight 95000.


2006 ◽  
Vol 61 (9-10) ◽  
pp. 756-762 ◽  
Author(s):  
Samir P. Patel ◽  
Surendra S. Katyare

AbstractWe evaluated early and late effects of alloxan-diabetes and subsequent insulin treatment on the kinetic properties of succinate oxidase (SO) in rat liver mitochondria. Diabetic state lowered the SO activity; insulin treatment was effective in restoring the activity only in oneweek diabetic rats. The energies of activation in low and high temperature ranges (EH and EL) decreased significantly in diabetic animals; once again insulin treatment was partially effective only in the one-week diabetic group. The total phospholipids (TPL) and cholesterol (CHL) contents did not change in one-week groups. In one-month diabetic animals TPL decreased while CHL increased; insulin treatment induced further changes without restoring normality. The lysophospholipid (Lyso), sphingomyelin (SPM), phosphatidylinositol (PI) and phosphatidylserine (PS) content increased in the diabetic state while phosphatidylcholine (PC) and phosphatidylethanolamine (PE) decreased. Insulin treatment had a partial restorative effect. The changes in EH correlated negatively with SPM. The phase transition temperature, Tt, decreased in diabetic and insulin-treated groups. These changes correlated positively with the ratios of TPL/PI and TPL/PS. The membrane fluidity decreased in the diabetic state; insulin had a restorative effect only in the one-week group.


1978 ◽  
Vol 172 (2) ◽  
pp. 349-352 ◽  
Author(s):  
A. S. Pappu ◽  
P. Fatterpaker ◽  
A. Sreenivasan

1. There is a more than 2-fold increase in phospholipase A2 activity (EC 3.1.1.4) of liver mitochondria isolated from vitamin E-deficient rats compared with that in normal rats. 2. α-Tocopherol in lipoprotein-bound form is more effective than free α-tocopherol in restoring the enzyme activity to normal.


Sign in / Sign up

Export Citation Format

Share Document