scholarly journals The behaviour of leucine aminopeptidase towards thionopeptides

1987 ◽  
Vol 245 (1) ◽  
pp. 285-288 ◽  
Author(s):  
R E Beattie ◽  
D T Elmore ◽  
C H Williams ◽  
D J S Guthrie

Thionoleucine S-anilide (Leut-anilide), Leut-Gly-OEt and Leut-Phe-OMe were synthesized and shown to be competitive inhibitors of leucine aminopeptidase from pig kidney. The kinetics of inhibition were determined in the presence of leucine 4-methylcoumarin-7-amide as substrate. Although the compounds showed only moderate inhibitory potency, it was found that all were resistant to hydrolysis by the enzyme, in contrast with the reported behaviour of some thionopeptide analogues of substrates for other Zn2+-peptidases such as carboxypeptidase A and angiotensin-converting enzyme.

1992 ◽  
Vol 287 (2) ◽  
pp. 621-625 ◽  
Author(s):  
H Barelli ◽  
V Dive ◽  
A Yiotakis ◽  
J P Vincent ◽  
F Checler

A phosphonamide peptide, N-(phenylethylphosphonyl)-Gly-L-Pro-L-aminohexanoic acid, previously shown to block Clostridium histolyticum collagenases, was examined as a putative inhibitor of endopeptidase 24.16 and endopeptidase 24.15. Hydrolysis of two endopeptidase 24.16 substrates, i.e. 3-carboxy-7-methoxycoumarin (Mcc)-Pro-Leu-Gly-Pro-D-Lys-dinitrophenyl (Dnp) and neurotensin, were completely and dose-dependently inhibited by the phosphonamide inhibitor with KI values of 0.3 and 0.9 nM respectively. In addition, the phosphonamide peptide inhibited the hydrolysis of benzoyl (Bz)-Gly-Ala-Ala-Phe-(pAB) p-aminobenzoate and neurotensin by endopeptidase 24.15 with about a 10-fold lower potency (KI values of 5 and 7.5 nM respectively). The selectivity of this inhibitor towards several exo- and endo-peptidases belonging to the zinc-containing metallopeptidase family established that a 1 microM concentration of this inhibitor was unable to affect leucine aminopeptidase, carboxypeptidase A, angiotensin-converting enzyme and endopeptidase 24.11. The present paper therefore reports on the first hydrophilic highly potent endopeptidase 24.16 inhibitor and describes the most potent inhibitory agent directed towards endopeptidase 24.15 developed to date. These tools should allow one to assess the contribution of endopeptidase 24.16 and endopeptidase 24.15 to the physiological inactivation of neurotensin as well as other neuropeptides.


1988 ◽  
Vol 135 (1) ◽  
pp. 1-8
Author(s):  
B. R. Stevens ◽  
A. Fernandez ◽  
C. del Rio Martinez

Angiotensin converting enzyme activity was identified in brush-border membranes purified from the small intestinal epithelium of the common grackle, Quiscalus quiscula. Angiotensin converting enzyme was enriched 20-fold in the membrane preparation, compared with intestinal epithelial cell scrapes, and was coenriched with the brush-border markers, alkaline phosphatase and aminopeptidase N. The kinetics of hydrolysis of N-[3-(2-furyl)acryloyl]-L-phenylalanylglycylglycine (FAPGG) gave a Vmax of 907 +/− 41 units g-1 and a Km of 55 +/− 6 mumol l-1. The avian intestinal angiotensin converting enzyme was inhibited by the antihypertensive drug, Ramipril, with a median inhibitory concentration (IC50) of 1 nmol l-1. In the light of previous studies on angiotensin converting enzyme in mammalian epithelia, these results may implicate a physiological role for angiotensin converting enzyme in regulating electrolyte and fluid uptake in bird small intestines.


1987 ◽  
Vol 62 (3) ◽  
pp. 1216-1221 ◽  
Author(s):  
D. A. Rickaby ◽  
R. D. Bongard ◽  
M. J. Tristani ◽  
J. H. Linehan ◽  
C. A. Dawson

Given the pH dependence of enzymes in general and the potential importance of a blood and alveolar gas composition dependency on the interpretation of changes in the hydrolysis of angiotensin-converting enzyme (ACE) substrates by pulmonary endothelial ACE, we examined the influence of Pco2 and Po2 on the hydrolysis of a synthetic ACE substrate (benzoyl-phenylalanyl-alanyl-proline, BPAP) on passage through isolated rabbit lungs. Perfusate pH values of about 7.1, 7.4, and 7.9 were obtained by ventilating the lungs with gas containing different CO2 concentrations and Po2 values of approximately 110 and approximately 10 Torr were obtained by varying the concentration of O2 in the ventilating gas mixture. In the range studied neither acidosis nor alkalosis produced any significant changes in BPAP hydrolysis or in the kinetic parameters, Vmax and Km, for the hydrolysis process. On the other hand, a reduction in BPAP hydrolysis was detected when the Po2 was reduced from 110 to 10 Torr. The Vmax for BPAP hydrolysis by the lung was inversely correlated with the magnitude of the hypoxic vasoconstriction that occurred, suggesting that the reduced BPAP hydrolysis with hypoxia was due to the loss of perfused surface area due to the vasoconstriction. The results suggest that correlations between Pco2 and/or pH and whole-lung ACE activity that might occur in diseased lungs do not imply causalty. The hemodynamic consequences of changing Po2 (i.e., hypoxic vasoconstriction) may alter whole-organ ACE activity in the sense of changing the perfused surface area (i.e., the amount of ACE in contact with flowing perfusate).


1992 ◽  
Vol 286 (1) ◽  
pp. 217-221 ◽  
Author(s):  
F Checler ◽  
P Dauch ◽  
H Barelli ◽  
J L Nahon ◽  
J P Vincent

Melanin-concentrating hormone (MCH) is a cyclic peptide which behaves as an antagonist of the pituitary melanotropic hormone alpha-melanocyte-stimulating hormone in fishes. Cloning of the rat MCH cDNA precursor recently revealed the presence of an additional putative peptide named NEI. The present work examined the susceptibility of these novel peptides to hydrolysis by various purified exo- and endo-peptidases including endopeptidases 24.11 (NEP), 24.15, 24.16, angiotensin-converting enzyme, leucine aminopeptidase and carboxypeptidase A. NEP attacked MCH at three sites of the molecule with an apparent affinity of about 12 microM and a kcat. of 4 min-1. The first site of cleavage was at Cys-7-Met-8, i.e. within the peptide loop formed by the internal disulphide bridge. NEP could therefore be considered as an MCH-inactivating peptidase since the degradation products generated are probably devoid of biological activity. In contrast, NEI neither inhibited the degradation of the NEP chromogenic substrate glutaryl-Phe-Ala-Phe-p-aminobenzoate nor was susceptible to proteolysis by NEP. Unlike NEP, angiotensin-converting enzyme, endopeptidase 24.15 and endopeptidase 24.16 appeared totally unable to cleave MCH, whereas the peptide was readily degraded by aminopeptidase M and carboxypeptidase A.


Sign in / Sign up

Export Citation Format

Share Document