scholarly journals Studies on the origin of biliary phospholipid. Effect of dehydrocholic acid and cholic acid infusions on hepatic and biliary phospholipids

1990 ◽  
Vol 270 (3) ◽  
pp. 691-695 ◽  
Author(s):  
F Chanussot ◽  
H Lafont ◽  
J Hauton ◽  
B Tuchweber ◽  
I Yousef

The correlation between the secretion of biliary phospholipid (PL) and bile acid suggests a regulatory effect of bile acid on PL secretion. Bile acids may influence PL synthesis and/or the mobilization of a preformed PL pool. The objective of this study was to determine the contribution of these two sources to biliary PL, by using an experimental protocol in which dehydrocholic acid (DHCA) and cholic acid (CA) were infused to manipulate biliary PL secretion. In control rats, there was a steady state in bile flow. PL secretion and the biliary secretion of newly synthesized phosphatidylcholine (PC). The specific radioactivity of PC in bile was significantly higher than in plasma, microsomes and canalicular membranes. DHCA infusion decreased biliary PC secretion rate by 80%, and secretion returned to normal values at the transport maximum of CA. The specific radioactivity of biliary PC was decreased by 30% by DHCA infusion and reached normal values during CA infusion. There were no significant changes in the specific radioactivity of PC in plasma or cellular organelles during infusion of bile acids. These data indicate that: (1) newly synthesized PC contributes a small percentage to biliary PC; thus a preformed pool (microsomal and extrahepatic) is a major source of biliary PL; (2) the contribution of the extrahepatic pool to the biliary PL may be more important than the microsomal pool.

1970 ◽  
Vol 118 (3) ◽  
pp. 519-530 ◽  
Author(s):  
I. W. Percy-Robb ◽  
G. S. Boyd

1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-14C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-14C]mevalonic acid or rat lipoprotein labelled with [14C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of 14C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.


1984 ◽  
Vol 246 (1) ◽  
pp. G67-G71
Author(s):  
E. R. O'Maille ◽  
S. V. Kozmary ◽  
A. F. Hofmann ◽  
D. Gurantz

The effects of norcholate (a C23 bile acid that differs from cholate in having a side chain containing four rather than five carbon atoms) on bile flow and biliary lipid secretion were compared with those of cholate, using the anesthetized rat with a bile fistula. Norcholate and cholate were infused intravenously over the range of 0.6-6.0 mumol X min-1 X kg-1. Both bile acids were quantitatively secreted into bile; norcholate was secreted predominantly in unconjugated form in contrast to cholate, which was secreted predominantly as its taurine or glycine conjugates. The increase in bile flow per unit increase in bile acid secretion induced by norcholate infusion [17 +/- 3.2 (SD) microliters/mumol, n = 8] was much greater than that induced by cholate infusion (8.6 +/- 0.9 microliters/mumol, n = 9) (P less than 0.001). Both bile acids induced phospholipid and cholesterol secretion. For an increase in bile acid secretion (above control values) of 1 mumol X min-1 X kg-1, the increases in phospholipid secretion [0.052 +/- 0.024 (SD) mumol X min-1 X kg-1, n = 9] and cholesterol secretion (0.0071 +/- 0.0033 mumol X min-1 X kg-1, n = 9) induced by norcholate infusion were much less than those induced by cholate infusion (0.197 +/- 0.05 mumol X min-1 X kg-1, n = 9, and 0.024 +/- 0.011 mumol X min-1 X kg-1, n = 9, respectively; P less than 0.001 for both phospholipid and cholesterol). The strikingly different effects of norcholate on bile flow and biliary lipid secretion were attributed mainly to its possessing a considerably higher critical micellar concentration than cholate.


1979 ◽  
Vol 25 (2) ◽  
pp. 264-268 ◽  
Author(s):  
O Mäentausta ◽  
O Jänne

Abstract We describe a method for radioimmunoassay of conjugated cholic acid, chenodeoxycholic acid, and deoxycholic acid in serum. In the method, 125I-labeled bile acid conjugates are used as the tracers along with antibodies raised against individual bile acid-bovine serum albumin conjugates. Antibody-bound and free bile acids were separated by polyethylene glycol precipitation (final concentration, 125 g/L). Before radioimmunoassay, 0.1-mL serum samples were precipitated with nine volumes of ethanol, and portions from the supernate were used in the assays. The lowest measurable amounts of the bile acids, expressed as pmol/tube, were: cholic acid conjugates, 2; chenodeoxycholic acid conjugates, 0.5; and deoxycholic acid conjugates. 2. Analytical recovery of bile acids added to bile acid-free serum ranged from 85 to 110%; intra-assay and inter-assay CVs ranged from 3.2 to 5.3% and from 5.3 to 12.2%, respectively. Concentrations (mean +/- SD) of the bile acid conjugates in serum from apparently healthy women and men (in mumol/L) were: cholic acid conjugates, 0.43 +/- 0.17 (n = 126); chenodeoxycholic acid conjugates, 0.47 +/- 0.23 (n = 111); and deoxycholic acid conjugates, 0.33 +/- 0.11 (n = 96). The values for primary bile acids were greatly increased in patients with various hepatobiliary diseases.


1983 ◽  
Vol 29 (12) ◽  
pp. 1653-1660 ◽  
Author(s):  
Toshichika Ohtomo

In a previous paper, we showed that bile acid derivatives inhibit capsule formation as well as taurine biosynthesis in a taurine+ (Tau+) encapsulated strain of Staphylococcus aureus. In the present study, binding of [14C]cholic acid ([14C]CA) and [14C]taurocholic acid ([14C]TA) to the staphylococcal polysaccharide antigen (SPA) of the capsular fraction was examined. The bile acids were found to bind with SPA via taurine of the Tau+ cells. [14C]CA bound with the SPA fraction of the Tau+ strain within 10–30 min, whereas 60–120 min was required in the binding of [14C]TA. Various bile acids competed with cholic acid binding to Tau+ cells which was shown by the inhibition of binding with cholic acid or taurocholic acid but not with glycholic acid. Binding of bile acid derivatives to a Tau− encapsulated mutant or to capsular material from this mutant was not observed.


2018 ◽  
Vol 84 (10) ◽  
Author(s):  
Heidi Doden ◽  
Lina A. Sallam ◽  
Saravanan Devendran ◽  
Lindsey Ly ◽  
Greta Doden ◽  
...  

ABSTRACTBile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacteriumClostridium leptum; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such asClostridium scindens,Clostridium hylemonae, andClostridium hiranonis. Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread amongFirmicutes,Actinobacteriain theCoriobacteriaceaefamily, and human gutArchaea.IMPORTANCE12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteriaC. scindens,C. hiranonis, andC. hylemonae. Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract.


1978 ◽  
Vol 171 (2) ◽  
pp. 409-412 ◽  
Author(s):  
G A D Haslewood ◽  
S Ikawa ◽  
L Tökés ◽  
D Wong

1. Bile salts of the green turtle Chelonia mydas (L.) were analysed as completely as possible. 2. They consist of taurine conjugates of 3 alpha, 7 alpha, 12 alpha, 22 xi-tetrahydroxy-5 beta-cholestan-26-oic acid (tetrahydroxysterocholanic acid) and 3 alpha 12 alpha, 22 xi-trihydroxy-5 beta-cholestan-26-oic acid, with minor amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5beta-cholan-24-oic acid (cholic acid), 3alpha, 12 alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid) and possibly other bile acids. 3. Cholic acid and deoxycholic acid represent the first known examples of bile acids common to chelonians and other animal forms: they may indicate independent evolution in chelonians to C24 bile acids. 4. The discovery of a 7-deoxy C27 bile acid is the first evidence that C27 bile acids or their conjugates have an enterohepatic circulation.


2000 ◽  
Vol 278 (6) ◽  
pp. R1674-R1684 ◽  
Author(s):  
M. Grosell ◽  
M. J. O'Donnell ◽  
C. M. Wood

Ion and water transport across the teleost Oncorhynchus mykiss gallbladder were studied in vivo by comparing flow and composition of hepatic bile, collected by chronic catheter, to volume and composition of terminally collected gallbladder bile. Differences in composition were comparable with those of other vertebrates, whereas bile flow (75 μl ⋅ kg− 1 ⋅ h− 1) was below values reported for endothermic vertebrates. The gallbladder concentrates bile acids five- to sevenfold and exhibits higher net Cl− than Na+ transport in vivo, in contrast to the 1:1 transport ratio from gallbladders under saline/saline conditions. Transepithelial potential (TEP) in the presence of bile, at the apical surface, was −13 mV (bile side negative) but +1.5 mV in the presence of saline. Bile acid in the apical saline reversed the TEP, presumably by a Donnan effect. We propose that ion transport across the gallbladder in vivo involves backflux of Na+ from blood to bile resulting in higher net Cl− than Na+ flux. This Na+backflux is driven by a bile side negative TEP and low Na+activity in bile due to the complexing effects of bile acids.


1991 ◽  
Vol 260 (1) ◽  
pp. G167-G174
Author(s):  
W. G. Hardison ◽  
E. Dalle-Molle ◽  
E. Gosink ◽  
P. J. Lowe ◽  
J. H. Steinbach ◽  
...  

To determine the effects of alteration of biliary paracellular permeability on bile flow and composition, we measured the biliary outputs of compounds highly concentrated in bile, all infused at a constant rate in the isolated rat liver perfused with Krebs-Henseleit buffer in a one-pass fashion. Paracellular permeability was increased by infusing 10(-8) M vasopressin (VP). The cholephilic compounds were three cations of various molecular weights, tributylmethylammonium (TBuMA), N-acetylprocainamide ethobromide (APAEB), and propidium iodide, and two anions, taurocholate (TC), a micelle-forming bile acid, and taurodehydrocholate (TDHC), an nonmicelle former. When TC was infused and paracellular permeability increased with VP, neither bile flow nor TC output changed, whereas outputs of cations fell. When TDHC was infused, TDHC output fell, as did outputs of all cations. The decrements in cation outputs exceeded that of TDHC and were inversely related to the molecular weight of the cation. To document that these changes were not related to reduced uptake of these compounds, we tested the uptakes of TBuMA, APAEB, and TDHC into isolated hepatocytes. In no case did 10(-8) M VP significantly reduce uptake. The data demonstrate that micelle-forming bile acids, with their high effective molecular weights, do not efflux from the biliary tree when permeability is increased with VP, whereas nonmicelle-forming bile acids do. Cations efflux more readily than anions, and within this group efflux rate is inversely related to molecular weight. The data confirm the size and charge selectivity of biliary tree permeability.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document