scholarly journals The effect of (−)-hydroxycitrate on the activity of the low-density-lipoprotein receptor and 3-hydroxy-3-methylglutaryl-CoA reductase levels in the human hepatoma cell line Hep G2

1990 ◽  
Vol 272 (1) ◽  
pp. 181-186 ◽  
Author(s):  
T A Berkhout ◽  
L M Havekes ◽  
N J Pearce ◽  
P H E Groot

(-)-Hydroxycitrate, a potent inhibitor of ATP citrate-lyase, was tested in Hep G2 cells for effects on cholesterol homoeostasis. After 2.5 h and 18 h incubations with (-)-hydroxycitrate at concentrations of 0.5 mM or higher, incorporation of [1,5-14C]citrate into fatty acids and cholesterol was strongly inhibited. This most likely reflects an effective inhibition of ATP citrate-lyase. Cholesterol biosynthesis was decreased to 27% of the control value as measured by incorporations from 3H2O, indicating a decreased flux of carbon units through the cholesterol-synthetic pathway. After 18 h preincubation with 2 mM-(-)-hydroxycitrate, the cellular low-density-lipoprotein (LDL) receptor activity was increased by 50%, as determined by the receptor-mediated association and degradation. Measurements of receptor-mediated binding versus LDL concentration suggests that this increase was due to an increase in the numbers of LDL receptors. Simultaneously, enzyme levels of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase as determined by activity measurements increased 30-fold. Our results suggest that the increases in HMG-CoA reductase and the LDL receptor are initiated by the decreased flux of carbon units in the cholesterol-synthetic pathway, owing to inhibition of ATP citratelyase. A similar induction of HMG-CoA reductase and LDL receptor was also found after preincubations of cells with 0.3 microM-mevinolin, suggesting that the underlying mechanism for this induction is identical for both drugs.

1991 ◽  
Vol 6 (3) ◽  
pp. 223-230 ◽  
Author(s):  
J.-G. Lehoux ◽  
A. Lefebvre

ABSTRACT Low-density lipoprotein (LDL) receptor mRNA was found in both rat and hamster adrenals. Within 30 min after ACTH administration a significant increase in the levels of both LDL receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) mRNAs was observed in rat adrenals; these levels remained increased for up to 240 min. The increase in the levels of LDL receptor and HMG-CoA reductase mRNAs produced by ACTH was reduced by co-administration of aminoglutethimide while, at the same time, the adrenal cholesterol content of rats treated with both aminoglutethimide and ACTH was significantly increased compared with that in groups treated with ACTH alone. Cycloheximide also induced increased levels of rat adrenal mRNAs for LDL receptor and HMG-CoA reductase, but this effect was not additive with that of ACTH. These results suggest that, in the rat, the short-term effect of ACTH on the levels of mRNAs for the LDL receptor and HMG-CoA reductase is similarly controlled and might be mediated through changes in the adrenal cholesterol content. In the hamster adrenal, however, no significant fluctuations were found in the level of LDL receptor mRNA, although a marked increase was found in the level of HMG-CoA reductase mRNA, 2 h after ACTH administration. This indicates that an important effect of ACTH on cholesterol metabolism in the hamster adrenal is at the level of HMG-CoA reductase. In the hamster, therefore, where the main source of cholesterol for the adrenal gland is de-novo synthesis, it seems that a complex mechanism is involved in the control of LDL receptor gene expression.


1984 ◽  
Vol 222 (1) ◽  
pp. 35-39 ◽  
Author(s):  
L H Cohen ◽  
M Griffioen ◽  
L Havekes ◽  
D Schouten ◽  
V van Hinsbergh ◽  
...  

Compactin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase, decreased cholesterol synthesis in intact Hep G2 cells. However, after the inhibitor was washed away, the HMG-CoA-reductase activity determined in the cell homogenate was found to be increased. Also the high-affinity association of LDL (low-density lipoprotein) to Hep G2 cells was elevated after incubation with compactin. Lipoprotein-depleted serum, present in the incubation medium, potentiated the compactin effect compared with incubation in the presence of human serum albumin. Addition of either mevalonate or LDL prevented the compactin-induced rise in activities of both HMG-CoA reductase and LDL receptor in a comparable manner. It is concluded that in this human hepatoma cell line, as in non-transformed cells, both endogenous mevalonate or mevalonate-derived products and exogenous cholesterol are able to modulate the HMG-CoA reductase activity as well as the LDL-receptor activity.


1989 ◽  
Vol 260 (3) ◽  
pp. 731-736 ◽  
Author(s):  
D T Molowa ◽  
G M Cimis

Cellular processes responsible for maintaining cholesterol homoeostasis are highly regulated. To determine whether two of these processes, cholesterol biosynthesis and receptor-mediated uptake of low-density lipoprotein (LDL), are co-ordinately regulated in human liver, we employed a human hepatoma cell line (HepG2) and measured the accumulation of mRNA for LDL receptor, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and HMG-CoA synthase under a variety of conditions. Genomic Southern-blot analysis demonstrated that the integrity of these genes is maintained in the transformed cell. Treatment of HepG2 cells with mevalonate, 25-hydroxycholesterol, LDL, lovastatin or miconazole resulted in a similar effect on the accumulation of all three mRNAs at the concentrations tested. The onset of the response to drug, whether repression or induction of mRNA accumulation, occurred after approximately the same period of exposure for each mRNA. We conclude that the expression of the LDL receptor, HMG-CoA reductase and HMG-CoA synthase is co-ordinately regulated in HepG2 cells.


1994 ◽  
Vol 298 (1) ◽  
pp. 39-43 ◽  
Author(s):  
S Balasubramaniam ◽  
A Szanto ◽  
P D Roach

On the basis of studies in vivo and in vitro that involved the use of pharmacological amounts of drugs and hormones or excess cholesterol supplementation, the expression of the low-density lipoprotein (LDL) receptor appears to be tightly coupled to the regulation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity and to extracellular levels of LDL. The present study was undertaken to see how these three entities are regulated under normal physiological conditions over a 24 h period. The results show that, in the rat, hepatic LDL-receptor expression and plasma LDL levels exhibit diurnal periodicity, with a 2-3-fold difference between the peak and trough of each rhythm. Both rhythms showed high inverse correlation (r = -0.86, P < 0.01), plasma LDL levels being lowest at the onset of darkness when LDL-receptor expression was at its peak. The results also showed that the LDL-receptor protein in rat liver has a shorter half-life than that reported for cultured fibroblasts or HepG2 cells. The maximal expression of the LDL receptor occurred several hours before the peak activity of HMG-CoA reductase and appeared not to be influenced by cellular or membrane cholesterol levels during the 24 h cycle. Treatment with dexamethasone increased the LDL-receptor activity significantly at both the lowest and highest points of the rhythm, but the receptor rhythm was still maintained, suggesting that the signal for the circadian variation of the receptor expression is not mediated by adrenal hormones.


2019 ◽  
Vol 15 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Rabia Nabi ◽  
Sahir Sultan Alvi ◽  
Mohd. Saeed ◽  
Saheem Ahmad ◽  
Mohammad Salman Khan

Introduction: Diabetes Mellitus (DM) acts as an absolute mediator of cardiovascular risk, prompting the prolonged occurrence, size and intricacy of atherosclerotic plaques via enhanced Advanced Glycation Endproducts (AGEs) formation. Moreover, hyperglycemia is associated with enhanced glyco-oxidized and oxidized Low-Density Lipoprotein (LDL) possessing greater atherogenicity and decreased the ability to regulate HMG-CoA reductase (HMG-R). Although aminoguanidine (AG) prevents the AGE-induced protein cross-linking due to its anti-glycation potential, it exerts several unusual pharmaco-toxicological effects thus restraining its desirable therapeutic effects. HMG-R inhibitors/statins exhibit a variety of beneficial impacts in addition to the cholesterol-lowering effects. Objective: Inhibition of AGEs interaction with receptor for AGEs (RAGE) and glyco-oxidized-LDL by HMG-R inhibitors could decrease LDL uptake by LDL-receptor (LDL-R), regulate cholesterol synthesis via HMG-R, decrease oxidative and inflammatory stress to improve the diabetes-associated complications. Conclusion: Current article appraises the pathological AGE-RAGE concerns in diabetes and its associated complications, mainly focusing on the phenomenon of both circulatory AGEs and those accumulating in tissues in diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy, discussing the potential protective role of HMG-R inhibitors against diabetic complications.


1997 ◽  
Vol 133 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Masakazu Sakai ◽  
Shozo Kobori ◽  
Takeshi Matsumura ◽  
Takeshi Biwa ◽  
Yoshihiro Sato ◽  
...  

1992 ◽  
Vol 282 (1) ◽  
pp. 41-48 ◽  
Author(s):  
R De Water ◽  
J A A M Kamps ◽  
M C M Van Dijk ◽  
E A M J Hessels ◽  
J Kuiper ◽  
...  

beta-Migrating very-low-density lipoprotein (beta-VLDL) is a cholesteryl-ester-enriched lipoprotein which under normal conditions is rapidly cleared by parenchymal liver cells. In this study the characteristics of the interaction of beta-VLDL with rat parenchymal cells, Hep G2 cells and human parenchymal cells are evaluated. The binding of beta-VLDL to these cells follows saturation kinetics (Bmax. respectively 117, 106 and 103 ng of beta-VLDL apoliprotein/mg of cell protein), with a relatively high affinity (Kd respectively for beta-VLDL of 10.7, 5.1 and 8.4 micrograms/ml). Competition studies of unlabelled beta-VLDL, low-density lipoprotein (LDL) or acetylated LDL with the binding of radiolabelled beta-VLDL indicate that a LDL-receptor-independent, Ca(2+)-independent, specific recognition site for beta-VLDL is present on rat and human parenchymal cells, whereas with Hep G2 cells or mouse macrophages beta-VLDL recognition is performed by the LDL receptor. The binding of beta-VLDL to Hep G2 cells was down-regulated by 89% by prolonged exposure to beta-VLDL, whereas for human parenchymal and rat parenchymal cells down-regulation of 44% and 20% respectively was observed. Studies with antibodies against the LDL receptor support the presence of a LDL-receptor-independent specific beta-VLDL recognition site on rat and human parenchymal cells. It is concluded that a LDL-receptor-independent recognition site for beta-VLDL is present on rat and human parenchymal liver cells. The presence of a LDL-receptor-independent recognition site on human parenchymal cells may mediate in vivo the uptake of beta-VLDL during consumption of a cholesterol-rich diet, when LDL receptors are down-regulated, thus protecting against the extrahepatic accumulation of the atherogenic beta-VLDL constituents.


Sign in / Sign up

Export Citation Format

Share Document