Effects of HMG CoA reductase inhibitor on cholesterol absorption in obesity: Implications for the regulation of very-low-density lipoprotein B-100 metabolism

2002 ◽  
Vol 3 (2) ◽  
pp. 235
1995 ◽  
Vol 113 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Jose M. Ordovas ◽  
Jose Lopez-Miranda ◽  
Francisco Perez-Jimenez ◽  
Carmen Rodriguez ◽  
Jong-Soon Park ◽  
...  

1990 ◽  
Vol 272 (1) ◽  
pp. 181-186 ◽  
Author(s):  
T A Berkhout ◽  
L M Havekes ◽  
N J Pearce ◽  
P H E Groot

(-)-Hydroxycitrate, a potent inhibitor of ATP citrate-lyase, was tested in Hep G2 cells for effects on cholesterol homoeostasis. After 2.5 h and 18 h incubations with (-)-hydroxycitrate at concentrations of 0.5 mM or higher, incorporation of [1,5-14C]citrate into fatty acids and cholesterol was strongly inhibited. This most likely reflects an effective inhibition of ATP citrate-lyase. Cholesterol biosynthesis was decreased to 27% of the control value as measured by incorporations from 3H2O, indicating a decreased flux of carbon units through the cholesterol-synthetic pathway. After 18 h preincubation with 2 mM-(-)-hydroxycitrate, the cellular low-density-lipoprotein (LDL) receptor activity was increased by 50%, as determined by the receptor-mediated association and degradation. Measurements of receptor-mediated binding versus LDL concentration suggests that this increase was due to an increase in the numbers of LDL receptors. Simultaneously, enzyme levels of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase as determined by activity measurements increased 30-fold. Our results suggest that the increases in HMG-CoA reductase and the LDL receptor are initiated by the decreased flux of carbon units in the cholesterol-synthetic pathway, owing to inhibition of ATP citratelyase. A similar induction of HMG-CoA reductase and LDL receptor was also found after preincubations of cells with 0.3 microM-mevinolin, suggesting that the underlying mechanism for this induction is identical for both drugs.


Sign in / Sign up

Export Citation Format

Share Document