scholarly journals Structural alteration of mouse P450coh by mutation of glycine-207 to proline: spin equilibrium, enzyme kinetics, and heat sensitivity

1993 ◽  
Vol 294 (1) ◽  
pp. 31-34 ◽  
Author(s):  
R O Juvonen ◽  
M Iwasaki ◽  
T Sueyoshi ◽  
M Negishi

Mouse cytochrome P450coh is a high-spin haem protein which specifically catalyses coumarin 7-hydroxylase activity. A mutation of Gly-207 to Pro shifts the P450coh completely to the low-spin form, indicating that the sixth axial position of the haem is hexaco-ordinated with a water molecule in the mutant G207P. Moreover, the G207P mutation increases the Km value for coumarin 7-hydroxylase activity 100-fold and the Kd value for coumarin binding 200-fold. Conversely, the mutation decreases the Ki and Kd values 10- and 20-fold respectively when testosterone, a larger molecule, is used as a substrate. The results, therefore, are consistent with an idea that the substrate pocket may be larger in the mutant G207P than in the wild-type cytochrome P-450. A Gly-207 to Ala mutation (G207A) of P450coh (G207A), on the other hand, affects neither the spectral nor the enzymic properties of P450coh. Pro-207, through cis/trans isomerization or formation of a kink, may confer on the G207P a structural alteration of its substrate-haem pocket. Our previous studies [Iwasaki, Juvonen, Lindberg and Negishi (1991) J. Biol. Chem. 266, 3380-3382; Juvonen, Iwasaki and Negishi (1991) J. Biol. Chem. 266, 16431-16435] show that the residue at position 209 in P450coh resides close to the sixth axial position of the haem, and the spin equilibrium of the cytochrome P-450 shifts toward the high-spin state as residue 209 becomes more hydrophobic and larger. A Gly-207 to Pro mutation, therefore, results in the creation of a larger substrate pocket in the mutant cytochrome P-450 by altering the protein structure around residue 209 so that a water molecule and testosterone can be accommodated.

1995 ◽  
Vol 306 (1) ◽  
pp. 29-33 ◽  
Author(s):  
M Iwasaki ◽  
D G Davis ◽  
T A Darden ◽  
L G Pedersen ◽  
M Negishi

The mutation of Ala-117 to Val conferred dehydroepiandrosterone (DHEA) hydroxylase activity on cytochrome P-450 2a-4, with the production of both 2 alpha- and 7 alpha-hydroxyDHEA at similar rates. P-450 2a-5 which has Val at position 117, acquired high DHEA hydroxylase activity by mutation of Phe-209. Mutant F209L of P-450 2a-5 exhibited strong regiospecificity at the 2-position of the DHEA molecule with the production of 2 alpha-hydroxy DHEA as the major metabolite. On the other hand, mutant F209V of P-450 2a-5 showed the 7-position to be the major hydroxylation site, 7 beta-hydroxyDHEA and 7 alpha-OHDHEA being produced. Therefore the regiospecificity of DHEA hydroxylase activity of P-450 2a-5 is altered between the 2- and 7-position depending on the amino acid at position 209. Modelling of the DHEA molecule in the pocket of bacterial P-450cam showed that the steroid can be accommodated in at least two orientations for which the 2- or 7- position is near the sixth axial position of the haem. Moreover, these two orientations, which are of similar energy, can be interconverted by a 180 degrees rotation of the steroid molecule around its long axis. These results support the hypothesis that the steroid molecule in the pocket is in dynamic equilibrium with multiple binding orientations and that the equilibrium is apparently determined by a few critical residues including those at positions 117 and 209.


1990 ◽  
Vol 267 (2) ◽  
pp. 365-371 ◽  
Author(s):  
J S Miles ◽  
A W McLaren ◽  
L M Forrester ◽  
M J Glancey ◽  
M A Lang ◽  
...  

1. We have constructed a full-length human liver cytochrome P450IIA cDNA from a partial-length clone by oligonucleotide-directed mutagenesis, and subcloned it into the monkey kidney (COS-7) cell expression vector, pSVL. 2. The cDNA encodes a 49 kDa protein with coumarin 7-hydroxylase (COH) activity which cross-reacts with antisera to the mouse cytochrome P-450 isoenzyme responsible for COH activity and comigrates with a human liver microsomal protein. 3. Western blot analysis of a panel of human livers indicates that the level of the 49 kDa protein, detected using antisera to either the mouse COH P-450 or rat P450IIA1 protein, correlates very highly with COH activity. 4. Antisera to the rat P450IIA1 protein can inhibit COH activity in human liver microsomes. Taken together, these data indicate that a member of the P450IIA subfamily is responsible for most, if not all, of the COH activity in human liver.


1992 ◽  
Vol 288 (2) ◽  
pp. 503-509 ◽  
Author(s):  
J S Miles ◽  
A W Munro ◽  
B N Rospendowski ◽  
W E Smith ◽  
J McKnight ◽  
...  

1. The gene CYP102 encoding cytochrome P-450 BM-3 and subgenes encoding the cytochrome P-450 and cytochrome P-450 reductase domains have been cloned in Escherichia coli. 2. The protein products of these genes have been overexpressed and purified to homogeneity. 3. The cytochrome P-450 domain is purified in the ferric low-spin state, but is readily converted into the high-spin state by addition of the substrate palmitate (Ks = 1 microM). The cytochrome P-450 reductase domain readily reduces cytochrome c. Mixing the two domains reconstitutes only about one-thousandth of the fatty acid hydroxylase activity associated with the intact cytochrome P-450 BM-3. 4. The X-band e.p.r. spectra of both the cytochrome P-450 domain and intact cytochrome P-450 BM-3 give g-values indicating low-spin ferric haem. The spectra are virtually identical with those of the equivalent form of cytochrome P-450 cam indicating that the haem ligation in cytochrome P-450 BM-3 is identical with that of cytochrome P-450 cam. 5. Resonance Raman spectra of the substrate-free and substrate-bound forms of the cytochrome P-450 domain are given. Spectral differences in comparison with cytochrome P-450 cam may reflect subtle electronic differences between the respective haem environments.


Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116286 ◽  
Author(s):  
Hai Zhang ◽  
Lei Luo ◽  
Jiaxun Liu ◽  
Anyao Jiao ◽  
Jianguo Liu ◽  
...  

2007 ◽  
Vol 63 (a1) ◽  
pp. s202-s202
Author(s):  
U. Pietsch ◽  
M. Lommel ◽  
Y. Bodethin ◽  
D. Kurth ◽  
G. Schwarzl ◽  
...  

1996 ◽  
Vol 319 (3) ◽  
pp. 675-681 ◽  
Author(s):  
Jean-Paul RENAUD ◽  
Dmitri R. DAVYDOV ◽  
Karel P. M. HEIRWEGH ◽  
Daniel MANSUY ◽  
Gaston HUI BON HOA

An approach to the quantitative spectral analysis of substrate binding and inactivation of cytochrome P-450 in microsomes is described. The method is based on the application of the principal component analysis technique on the Soret-region spectra measured at different temperatures at various concentrations of substrate. This approach allowed us to study the thermodynamic parameters of substrate binding and spin transitions in human cytochrome P-450 3A4 expressed in yeast (Saccharomyces cerevisiae) microsomes. These parameters are discussed in comparison with the values reported earlier by Ristau et al. [(1979) Acta Biol. Med. Ger. 38, 177–185] for rabbit liver cytochrome P-450 2B4 in solution with benzphetamine as a substrate. Our analysis shows the substrate-free states of 2B4 and 3A4 to be very similar. However, substrate binding seems to perturb haem-protein interactions in 3A4 in contrast with 2B4, where the effect of substrate binding on the thermodynamic parameters of spin transitions was insignificant. The implication of the results for the mechanism of substrate-induced spin shift is discussed.


Author(s):  
Guangxin Song ◽  
Rui Gao ◽  
Zhao Zhao ◽  
Yujun Zhang ◽  
Huaqiao Tan ◽  
...  

1998 ◽  
Vol 53 (9) ◽  
pp. 755-765
Author(s):  
Christian Kollma ◽  
Sighart F. Fischer ◽  
Michael C. Böhm

AbstractThe origin of the displacement of the Fe atom in deoxymyoglobin with respect to the porphyrin plane in the high-spin state is examined by a qualitative molecular orbital (MO) analysis on the extended Hückel level. We find that attachment of a fifth ligand (imidazole in our model complex) to Fe(II)porphyrin favors the out-of-plane shift due to a strengthening of the bonding interaction between Fe and the nitrogen of the imidazole ligand. This results in a high-spin (5 = 2) ground state with Fe shifted out-of-plane for the five-coordinate complex instead of an intermediate spin ground state (5 = 1) with Fe lying in the plane for four-coordinate Fe(II)porphyrin. The relative energies of the different spin states as a function of the distance between Fe and the porphyrin plane are evaluated using an ROHF (restricted open shell Hartree-Fock) version of an INDO (intermediate neglect of differential overlap) method. We observe a level crossing between high-spin and intermediate spin states whereas the low-spin (5 = 0) state remains always higher in energy.


Sign in / Sign up

Export Citation Format

Share Document