scholarly journals Molecular analysis of Rh polypeptides in a family with RhD-positive and RhD-negative phenotypes

1994 ◽  
Vol 299 (1) ◽  
pp. 207-211 ◽  
Author(s):  
F Umenishi ◽  
E Kajii ◽  
S Ikemoto

To investigate the genetic basis of the Rh polypeptide gene, we attempted the isolation of cDNA clones for Rh polypeptide from a family with the RhD-positive and RhD-negative phenotypes using the reverse transcription (RT)-PCR method for each reticulocyte RNAs followed by subcloning. The isolated cDNAs showed the existence of another Rh-related clone (RhPII-1 cDNA, tentative designation) besides the RhPI and RhPII cDNA clones reported previously by us. The RhPII-1 cDNA had a single nucleotide substitution with one amino acid substitution compared with the RhPII cDNA:substitution C-->T in nucleotide 380, changing codon 127 from GCG to GTG (Ala->Val). The RhPI, RhPII, and RhPII-1 cDNA clones were detected in all individuals by the PCR experiment. This suggests that the Rh polypeptide genes have been inherited from parents and might be highly polymorphic. The PCR amplification of an RhPII-specific region from reticulocyte RNA and genomic DNA in all the family proved that the RhPII gene exists in both RhD-positive and RhD-negative individuals. By Southern-blot analysis of the DNAs from the family, two independent polymorphisms concerning the RhC/c and RhD/d phenotypes were observed. These results demonstrate that the RhPI and RhPII genes are also present in the RhD-negative donors, and the RhPII-related cDNAs encode not the RhD, but the RhC/c and/or E/e, polypeptides.

Author(s):  
Hiroshi Yamagishi ◽  
Megumi Jikuya ◽  
Kanako Okushiro ◽  
Ayako Hashimoto ◽  
Asumi Fukunaga ◽  
...  

AbstractCytoplasmic male sterility (CMS) observed in many plants leads defect in the production of functional pollen, while the expression of CMS is suppressed by a fertility restorer gene in the nuclear genome. Ogura CMS of radish is induced by a mitochondrial orf138, and a fertility restorer gene, Rfo, encodes a P-type PPR protein, ORF687, acting at the translational level. But, the exact function of ORF687 is still unclear. We found a Japanese variety showing male sterility even in the presence of Rfo. We examined the pollen fertility, Rfo expression, and orf138 mRNA in progenies of this variety. The progeny with Type H orf138 and Rfo showed male sterility when their orf138 mRNA was unprocessed within the coding region. By contrast, all progeny with Type A orf138 were fertile though orf138 mRNA remained unprocessed in the coding region, demonstrating that ORF687 functions on Type A but not on Type H. In silico analysis suggested a specific binding site of ORF687 in the coding region, not the 5′ untranslated region estimated previously, of Type A. A single nucleotide substitution in the putative binding site diminishes affinity of ORF687 in Type H and is most likely the cause of the ineffectiveness of ORF687. Furthermore, fertility restoration by RNA processing at a novel site in some progeny plants indicated a new and the third fertility restorer gene, Rfs, for orf138. This study clarified that direct ORF687 binding to the coding region of orf138 is essential for fertility restoration by Rfo.


Transfusion ◽  
2019 ◽  
Vol 59 (10) ◽  
Author(s):  
åsa Hellberg ◽  
Annika K. Hult ◽  
Ines Moser ◽  
Beatriz Tomaz ◽  
Maria Rodrigues ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2933 ◽  
Author(s):  
Hoseong Choi ◽  
Yeonhwa Jo ◽  
Ju-Yeon Yoon ◽  
Seung-Kook Choi ◽  
Won Kyong Cho

Viroids are the smallest infectious agents, and their genomes consist of a short single strand of RNA that does not encode any protein.Chrysanthemum stunt viroid(CSVd), a member of the familyPospiviroidae, causes chrysanthemum stunt disease. Here, we report the genomic variations of CSVd to understand the sequence variability of CSVd in different chrysanthemum cultivars. We randomly sampled 36 different chrysanthemum cultivars and examined the infection of CSVd in each cultivar by reverse transcription polymerase chain reaction (RT-PCR). Eleven cultivars were infected by CSVd. Cloning followed by Sanger sequencing successfully identified a total of 271 CSVd genomes derived from 12 plants from 11 cultivars. They were further classified into 105 CSVd variants. Each single chrysanthemum plant had a different set of CSVd variants. Moreover, different single plants from the same cultivar had different sets of CSVd variants but identical consensus genome sequences. A phylogenetic tree using 12 consensus genome sequences revealed three groups of CSVd genomes, while six different groups were defined by the phylogenetic analysis using 105 variants. Based on the consensus CSVd genome, by combining all variant sequences, we identified 99 single-nucleotide variations (SNVs) as well as three nucleotide positions showing high mutation rates. Although 99 SNVs were identified, most CSVd genomes in this study were derived from variant 1, which is identical to known CSVd SK1 showing pathogenicity.


2016 ◽  
Vol 18 (12) ◽  
pp. 4878-4887 ◽  
Author(s):  
Başak Öztürk ◽  
Maarten Ghequire ◽  
Thi Phi Oanh Nguyen ◽  
René De Mot ◽  
Ruddy Wattiez ◽  
...  

Phytotaxa ◽  
2021 ◽  
Vol 484 (1) ◽  
pp. 44-74
Author(s):  
OLGA V. YURTSEVA ◽  
N.K. BADMAEVA ◽  
EVGENY V. MAVRODIEV

Maximum Likelihood (ML) and Bayesian analyses (BI) applied for 3-plastid loci (cpDNA trnL(UAA) intron, trnL–trnF IGS, and rpl32–trnL(UAG) IGS regions) / 55 tips of Atraphaxis revealed a subclade of two endemics from Transbaikalia (Dahuria) which are often mistaken for A. pungens and A. frutescens but phylogenetically distant from both. Atraphaxis selengensis is a species new to science which inhabits dune sands along the Selenga and Chikoy rivers and has specific morphology of perianth, fruits, ochreas, leaf blades, and pollen. Atraphaxis davurica inhabits stony mountain steppe in Buryatia and Chita region and differs from A. pungens and A. frutescens by longer ochreas, fruits, styles and stigmas extended to ends. Two varieties recognized by Ledebour in plants from Russian Transbaikalia have no clear morphological and molecular distinctions, but the plants from Khentei-Chikoy Highlands subtly differ in leaf ratio (length/width), bark colour, and a single-nucleotide substitution in trnL–F region. These plants are described as A. davurica var. chikoensis var. nov. Morphological descriptions of A. selengensis and A. davurica are supplied with LM and SEM images and a distributional map. Atraphaxis frutescens and A. pungens are absent from Russian Transbaikalia but distributed in Altai, Tuva, Khakassia, Mongolia and China.


2010 ◽  
Vol 457 (5) ◽  
pp. 623-625
Author(s):  
Florian Grabellus ◽  
Sien-Yi Sheu ◽  
Sebastian Bauer ◽  
Norbert Speich ◽  
Kurt W. Schmid ◽  
...  

2020 ◽  
Vol 43 (9) ◽  
pp. 2158-2171 ◽  
Author(s):  
Chana Borjigin ◽  
Rhiannon K. Schilling ◽  
Jayakumar Bose ◽  
Maria Hrmova ◽  
Jiaen Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document