scholarly journals Zinc and barium inhibit the phospholipase A2 from Naja naja atra by different mechanisms

1994 ◽  
Vol 301 (2) ◽  
pp. 503-508 ◽  
Author(s):  
M Mezna ◽  
T Ahmad ◽  
S Chettibi ◽  
D Drainas ◽  
A J Lawrence

The mode of inhibition of the phospholipase A2 (PLA2) enzyme from the Chinese cobra (Naja naja atra) by Zn2+ is qualitatively different from inhibition by Ba2+. Inhibition by Ba2+ shows the kinetic characteristics of a conventional competitive inhibitor acting to displace Ca2+ from a single essential site, but Zn2+ has the paradoxical property of being more inhibitory at high than at low Ca2+ concentration. Kinetic analysis of the Ca(2+)-dependence of enzymic activity shows a bimodal response, indicating the presence of two Ca(2+)-binding sites with affinities of 2.7 microM and 125 microM respectively, and we propose that these can be identified with the two Ca(2+)-binding sites revealed by crystallographic analysis [White, Scott, Otwinowski, Gleb and Sigler (1990) Science 250, 1560-1563]. The results are consistent with the model that the enzyme is activated by two Ca2+ ions, one that is essential and can be displaced by Ba2+, and one that modulates the activity by a further 5-10-fold and which can be displaced by Zn2+. An alternative model is also presented in which the modulating Zn(2+)-binding site is a phenomenon of the lipid/water interface.

1989 ◽  
Vol 262 (3) ◽  
pp. 855-860 ◽  
Author(s):  
C C Yang ◽  
L S Chang

Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulphonic acid (TNBS), and two major trinitrophenylated (TNP) derivatives, TNP-1 and TNP-2, were separated by h.p.l.c. TNP-1 contained only one TNP group on Lys-6 and showed a marked decrease in enzymic activity, but still retained 45% of the lethal toxicity. Both Lys-6 and Lys-65 were modified in TNP-2, and modification of Lys-65 caused a further reduction of the lethal toxicity to 12.6%. However, the antigenicity of both TNP-1 and TNP-2 remained unchanged. The reactivity of Lys-6 and Lys-65 toward TNBS was greatly enhanced by Ca2+ and dihexanoyl-lecithin, suggesting that the two Lys residues are not directly involved in the binding of Ca2+ and substrate. The modified derivatives retained their affinity for Ca2+, indicating that Lys-6 and Lys-65 did not participate in the Ca2+ binding. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activities of the regenerated PLA2 are almost the same as those of native PLA2. These results indicate that Lys-6 and Lys-65 are important for the biological activities of PLA2, and incorporation of a bulky TNP group on Lys-6 and Lys-65 might give rise to a distortion of the active conformation of PLA2.


Toxicon ◽  
1992 ◽  
Vol 30 (2) ◽  
pp. 151-159 ◽  
Author(s):  
C.C. Yang ◽  
L.S. Chang ◽  
P.L. Ong ◽  
T.H. Tung

Sign in / Sign up

Export Citation Format

Share Document