scholarly journals Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal

1994 ◽  
Vol 303 (1) ◽  
pp. 69-72 ◽  
Author(s):  
S Ray ◽  
S Dutta ◽  
J Halder ◽  
M Ray

The effect of methylglyoxal on the oxygen consumption of Ehrlich-ascites-carcinoma (EAC)-cell mitochondria was tested by using different respiratory substrates, electron donors at different segments of the mitochondrial respiratory chain and site-specific inhibitors to identify the specific respiratory complex which might be involved in the inhibitory effect of methylglyoxal on the oxygen consumption by these cells. The results indicate that methylglyoxal strongly inhibits ADP-stimulated alpha-oxo-glutarate and malate plus pyruvate-dependent respiration, whereas, at a much higher concentration, methylglyoxal fails to inhibit succinate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinol, an artificial electron donor. Moreover, methylglyoxal cannot inhibit oxygen consumption when the NNN'N′-tetramethyl-p-phenylenediamine by-pass is used. The inhibitory effect of methylglyoxal is identical on both ADP-stimulated and uncoupler-stimulated respiration. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of EAC-cell mitochondrial respiration by methylglyoxal. We suggest that methylglyoxal possibly inhibits the electron flow through complex I of the EAC-cell mitochondrial respiratory chain.

1997 ◽  
Vol 323 (2) ◽  
pp. 343-348 ◽  
Author(s):  
Swati BISWAS ◽  
Manju RAY ◽  
Sanjoy MISRA ◽  
D. P. DUTTA ◽  
Subhankar RAY

The effect of methylglyoxal on the oxygen consumption of mitochondria of both normal and leukaemic leucocytes was tested by using different respiratory substrates and complex specific artificial electron donors and inhibitors. The results indicate that methylglyoxal strongly inhibits mitochondrial respiration in leukaemic leucocytes, whereas, at a much higher concentration, methylglyoxal fails to inhibit mitochondrial respiration in normal leucocytes. Methylglyoxal strongly inhibits ADP-stimulated α-oxoglutarate and malate plus NAD+-dependent respiration, whereas, at a higher concentration, methylglyoxal fails to inhibit succinate and α-glycerophosphate-dependent respiration. Methylglyoxal also fails to inhibit respiration which is initiated by duroquinone and cannot inhibit oxygen consumption when the N,N,N´,N´-tetramethyl-p-phenylenediamine by-pass is used. NADH oxidation by sub-mitochondrial particles of leukaemic leucocytes is also inhibited by methylglyoxal. Lactaldehyde, a catabolite of methylglyoxal, can exert a protective effect on the inhibition of leukaemic leucocyte mitochondrial respiration by methylglyoxal. Methylglyoxal also inhibits l-lactic acid formation by intact leukaemic leucocytes and critically reduces the ATP level of these cells, whereas methylglyoxal has no effect on normal leucocytes. We conclude that methylglyoxal inhibits glycolysis and the electron flow through mitochondrial complex I of leukaemic leucocytes. This is strikingly similar to our previous studies on mitochondrial respiration, glycolysis and ATP levels in Ehrlich ascites carcinoma cells [Ray, Dutta, Halder and Ray (1994) Biochem. J. 303, 69–72; Halder, Ray and Ray (1993) Int. J. Cancer 54, 443–449], which strongly suggests that the inhibition of electron flow through complex I of the mitochondrial respiratory chain and inhibition of glycolysis by methylglyoxal may be common characteristics of all malignant cells.


2021 ◽  
Author(s):  
Caroline Trumpff ◽  
Edward Owusu-Ansah ◽  
Hans-Ulrich Klein ◽  
Annie Lee ◽  
Vladislav Petyuk ◽  
...  

Mitochondrial respiratory chain (RC) function requires the stochiometric interaction among dozens of proteins but their co-regulation has not been defined in the human brain. Here, using quantitative proteomics across three independent cohorts we systematically characterized the co-regulation patterns of mitochondrial RC proteins in the human dorsolateral prefrontal cortex (DLPFC). Whereas the abundance of RC protein subunits that physically assemble into stable complexes were correlated, indicating their co-regulation, RC assembly factors exhibited modest co-regulation. Within complex I, nuclear DNA-encoded subunits exhibited >2.5-times higher co-regulation than mitochondrial (mt)DNA-encoded subunits. Moreover, mtDNA copy number was unrelated to mtDNA-encoded subunits abundance, suggesting that mtDNA content is not limiting. Alzheimer disease (AD) brains exhibited reduced abundance of complex I RC subunits, an effect largely driven by a 2-4% overall lower mitochondrial protein content. These findings provide foundational knowledge to identify molecular mechanisms contributing to age- and disease-related erosion of mitochondrial function in the human brain.


Author(s):  
Giorgio Lenaz ◽  
Alessandra Baracca ◽  
Giovanna Barbero ◽  
Christian Bergamini ◽  
Maria Elena Dalmonte ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1356-1356
Author(s):  
Wenli Liu ◽  
Yueqin Liu ◽  
Ruihong Wang ◽  
Cuiling Li ◽  
Chuxia Deng ◽  
...  

Abstract Abstract 1356 Poster Board I-378 Introduction Olfactomedin 4 (OLFM4), also called hGC-1, GW112 and pDP4, was first identified and specifically expressed in hematopoietic myeloid cells. OLFM4 expression in myeloid cells is regulated by transcription factors, PU1 and NF-κB. It has significant homology in its C-terminal domain with other olfactomedin-related proteins. OLFM4 encodes a 510 amino acid N-linked glycoprotein. The exact biological function of OLFM4, especially in neutrophils, is currently undefined. To characterize the in vivo function of OLFM4, we generated OLFM4 deficient mice (OLFM4-/-) and investigated its potential role in neutrophil functioins. Results 1) In this study, we showed that OLFM4 is a secreted glycoprotein and is also localized in the mitochondria, cytoplasm and cell membrane fractions of neutrophils. We demonstrated that OLFM4 interacts with GRIM-19 (Genes associated with Retinoid-IFN-induced Mortality-19), an apoptosis related protein, in the neutrophil mitochondria using co-immuoprecipitation assay. GRIM-19 is a subunit of complex I of mitochondrial respiratory chain and is essential for maintenance of mitochondrial membrane potential. Our result suggests that OLFM4 appears to be a novel component of complex I of mitochondrial respiratory chain and may be involved in regulation of mitochondrial membrane potential. 2) Mice heterozygous (OLFM4+/-) and homozygous (OLFM4-/-) for the null mutation in OLFM4 appeared to have normal development, fertility, and viability relative to wild-type (WT) mice. Whole blood analysis, differential leukocyte counts, blood chemistry and bone marrow smears were normal in OLFM4-/- mice, suggesting that OLFM4 is not essential for normal development and hematopoiesis in mice. 3) In response to LPS, fMLP and E.coli bacteria challenge, neutrophils from OLFM4-/- mice showed significantly reduced superoxide (O2−) and hydrogen peroxide (H2O2) production compared with WT mice. These results suggest that OLFM4 is an essential component to mediate O2− and H2O2 production in the neutrophil mitochondria under inflammation stimuli. 4) Exogenous H2O2 induced neutrophil apoptosis in a time and dose dependent manner in WT mice, but this induction of apoptosis was significantly reduced in OLFM4-/- mice. This result suggests that OLFM4 sensitizes and mediates H2O2-induced apoptosis in neutrophils. 5) Furthermore, we demonstrated that H2O2-stimulated mitochondrial membrane permeability reduction and caspase-3 and caspase-9 activation were inhibited in the neutrophils of OLFM4-/- mice. This result confirmed our hypothesis that OLFM4 may be involved in maintenance of mitochondrial membrane potential and suggests that OLFM4 may have opposite role as GRIM-19. 6) Moreover, Bax association with mitochondria and the cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO in response to H2O2 were inhibited in the neutrophils of OLFM4-/- mice. Conclusion Our results suggest: 1) OLFM4 has multiple subcellular localizations including mitochondria, cytoplasm, and cell membrane in neutrophils. The interaction of OLFM4 with GRIM-19 in the mitochondria suggests that OLFM4 is novel component of complex I of mitochondrial respiratory chain in the mitochondria of neutrophils, 2) OLFM4 is a novel mitochondrial molecule that is essential for O2− and H2O2 production in the neutrophils in the presence of inflammation stimuli, 3) Loss of OLFM4 in neutrophils does not trigger spontaneous apoptosis. However, OLFM4 sensitizes oxidative stress-induced apoptosis in mouse neutrophils. OLFM4 is involved in the regulation of mitochondria membrane potential and sensitizes cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO and caspases-3 and caspase-9 mediated apoptosis in the presence of oxidative stress. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document