scholarly journals Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: possible involvement of the mitogen-activated protein kinase cascade

1994 ◽  
Vol 303 (2) ◽  
pp. 475-479 ◽  
Author(s):  
C S T Hill ◽  
S Y Oh ◽  
S A Schmidt ◽  
K J Clark ◽  
A W Murray

Lysophosphatidic acid (LPA) was shown to be a powerful inhibitor of gap-junctional communication between cultured rat liver WB cells, as determined by the transfer of Lucifer Yellow, with 50% inhibition obtained at about 0.3 microM LPA. Inhibition of communication was rapid (5 min) and was maintained for at least 80 min. After incubation for 3 h with LPA, communication competence was partially restored and dye transfer was refractory to further addition of LPA. Communication in LPA-refractory cells retained sensitivity to inhibition by phorbol ester and by epidermal growth factor (EGF). LPA-induced inhibition was associated with phosphorylation of connexin-43 protein, as detected by slower migration of the protein detected on Western blots, which could be eliminated by incubation of samples with alkaline phosphatase. A close correspondence was observed between the time- and dose-dependency of LPA effects on communication and the induction of mitogen-activated protein kinase (MAP kinase). Activation of both the 42 kDa and 44 kDa subspecies were confirmed by mobility shifts on Western blots using an anti-(MAP kinase R1) (erk 1-III) antibody and by fractionation on Mono Q columns. Cells pretreated with phorbol ester for 24 h were insensitive to phorbol ester inhibition of communication or activation of MAP kinase, but retained their sensitivity to LPA. The results indicate that LPA initiates the activation of protein kinase cascades in WB cells that are probably independent of protein kinase C and identifies connexin-43 as one substrate for the activated kinases.

1993 ◽  
Vol 4 (8) ◽  
pp. 837-848 ◽  
Author(s):  
M Y Kanemitsu ◽  
A F Lau

We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine kinase(s) acting directly on Cx43 remain unidentified. In the current study, we demonstrate that downmodulation of 12-0-tetradecanoylphorbol 13-acetate (TPA)-sensitive protein kinase C (PKC) activity does not affect EGF's ability to reduce junctional permeability or phosphorylate Cx43 in T51B cells. EGF in the presence or absence of chronic TPA treatment stimulated marked increases in Cx43 phosphorylation on numerous sites as determined by two-dimensional tryptic phosphopeptide mapping. Computer-assisted sequence analysis of Cx43 identified several protein kinase phosphorylation consensus sites including two sites for mitogen-activated protein (MAP) kinase. EGF stimulated activation of MAP kinase in a time- and dose-dependent manner where the kinetics of kinase activity corroborated its possible involvement in mediating EGF's effects. Moreover, purified MAP kinase directly phosphorylated Cx43 on serine residues in vitro. Two-dimensional tryptic and chymotryptic phosphopeptide mapping demonstrated that the in vitro phosphopeptides represented a specific subset of the in vivo phosphopeptides produced in response to EGF after chronic TPA treatment. Therefore, EGF-induced disruption of gjc and phosphorylation of Cx43 may be mediated in part by MAP kinase in vivo.


2005 ◽  
Vol 16 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Joseph P. Stains ◽  
Roberto Civitelli

Osteoblasts are highly coupled by gap junctions formed by connexin43. Overexpression of connexin45 in osteoblasts results in decreased chemical and electrical coupling and reduces gene transcription from connexin response elements (CxREs) in the osteocalcin and collagen Iα1 promoters. Here, we demonstrate that transcription from the gap junction-dependent osteocalcin CxRE is regulated by extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) cascades. Overexpression of a constitutively active mitogen-activated protein kinase kinase (MEK), Raf, or Ras can increase transcription more than twofold of the CxRE, whereas inhibition of MEK or PI3K can decrease transcription threefold from the osteocalcin CxRE. Importantly, disruption of gap junctional communication by overexpression of connexin45 or treatment with pharmacological inhibitors of gap junctions results in reduced Raf, ERK, and Akt activation. The consequence of attenuated gap junction-dependent signal cascade activation is a decrease in Sp1 phosphorylation by ERK, resulting in decreased Sp1 recruitment to the CxRE and inhibited gene transcription. These data establish that ERK/PI3K signaling is required for the optimal elaboration of transcription from the osteocalcin CxRE, and that disruption of gap junctional communication attenuates the ability of cells to respond to an extracellular cue, presumably by limiting the propagation of second messengers among adjacent cells by connexin43-gap junctions.


2009 ◽  
Vol 20 (10) ◽  
pp. 2582-2592 ◽  
Author(s):  
Teresa I. Shakespeare ◽  
Caterina Sellitto ◽  
Leping Li ◽  
Clio Rubinos ◽  
Xiaohua Gong ◽  
...  

Both connexins and signal transduction pathways have been independently shown to play critical roles in lens homeostasis, but little is known about potential cooperation between these two intercellular communication systems. To investigate whether growth factor signaling and gap junctional communication interact during the development of lens homeostasis, we examined the effect of mitogen-activated protein kinase (MAPK) signaling on coupling mediated by specific lens connexins by using a combination of in vitro and in vivo assays. Activation of MAPK signaling pathways significantly increased coupling provided by Cx50, but not Cx46, in paired Xenopus laevis oocytes in vitro, as well as between freshly isolated lens cells in vivo. Constitutively active MAPK signaling caused macrophthalmia, cataract, glucose accumulation, vacuole formation in differentiating fibers, and lens rupture in vivo. The specific removal or replacement of Cx50, but not Cx46, ameliorated all five pathological conditions in transgenic mice. These results indicate that MAPK signaling specifically modulates coupling mediated by Cx50 and that gap junctional communication and signal transduction pathways may interact in osmotic regulation during postnatal fiber development.


2001 ◽  
Vol 154 (4) ◽  
pp. 815-828 ◽  
Author(s):  
Rui Lin ◽  
Bonnie J. Warn-Cramer ◽  
Wendy E. Kurata ◽  
Alan F. Lau

The mechanism by which v-Src disrupts connexin (Cx)43 intercellular gap junctional communication (GJC) is not clear. In this study, we determined that Tyr247 (Y247) and the previously identified Tyr265 (Y265) site of Cx43 were the primary phosphorylation targets for activated Src in vitro. We established an in vivo experimental system by stably expressing v-Src and wild-type (wt) Cx43, or Y247F, Y265F, or Y247F/Y265F Cx43 mutants in a Cx43 knockout mouse cell line. Wt and mutant Cx43 localized to the plasma membrane in the absence or presence of v-Src. When coexpressed with v-Src, the Y247F, Y265F, and Y247F/Y265F Cx43 mutants exhibited significantly reduced levels of tyrosine phosphorylation compared with wt Cx43, indicating that Y247 and Y265 were phosphorylation targets of v-Src in vivo. Most importantly, GJC established by the Y247F, Y265F, and Y247F/Y265F Cx43 mutants was resistant to disruption by v-Src. Furthermore, we did not find evidence for a role for mitogen-activated protein kinase in mediating the disruption of GJC by v-Src. We conclude that phosphorylation on Y247 and Y265 of Cx43 is responsible for disrupting GJC in these mammalian cells expressing v-Src.


Sign in / Sign up

Export Citation Format

Share Document