scholarly journals Gap Junctions Regulate Extracellular Signal-regulated Kinase Signaling to Affect Gene Transcription

2005 ◽  
Vol 16 (1) ◽  
pp. 64-72 ◽  
Author(s):  
Joseph P. Stains ◽  
Roberto Civitelli

Osteoblasts are highly coupled by gap junctions formed by connexin43. Overexpression of connexin45 in osteoblasts results in decreased chemical and electrical coupling and reduces gene transcription from connexin response elements (CxREs) in the osteocalcin and collagen Iα1 promoters. Here, we demonstrate that transcription from the gap junction-dependent osteocalcin CxRE is regulated by extracellular signal-regulated protein kinase (ERK) and phosphatidylinositol 3-kinase (PI3K) cascades. Overexpression of a constitutively active mitogen-activated protein kinase kinase (MEK), Raf, or Ras can increase transcription more than twofold of the CxRE, whereas inhibition of MEK or PI3K can decrease transcription threefold from the osteocalcin CxRE. Importantly, disruption of gap junctional communication by overexpression of connexin45 or treatment with pharmacological inhibitors of gap junctions results in reduced Raf, ERK, and Akt activation. The consequence of attenuated gap junction-dependent signal cascade activation is a decrease in Sp1 phosphorylation by ERK, resulting in decreased Sp1 recruitment to the CxRE and inhibited gene transcription. These data establish that ERK/PI3K signaling is required for the optimal elaboration of transcription from the osteocalcin CxRE, and that disruption of gap junctional communication attenuates the ability of cells to respond to an extracellular cue, presumably by limiting the propagation of second messengers among adjacent cells by connexin43-gap junctions.

1990 ◽  
Vol 10 (4) ◽  
pp. 1754-1763
Author(s):  
D S Crow ◽  
E C Beyer ◽  
D L Paul ◽  
S S Kobe ◽  
A F Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


1990 ◽  
Vol 111 (5) ◽  
pp. 2077-2088 ◽  
Author(s):  
L S Musil ◽  
B A Cunningham ◽  
G M Edelman ◽  
D A Goodenough

Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.


2003 ◽  
Vol 89 (1) ◽  
pp. 135-149 ◽  
Author(s):  
Irene C. Solomon ◽  
Ki H. Chon ◽  
Melissa N. Rodriguez

Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1–5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in brain stem regions implicated in respiratory control in both neonatal and adult rodents. Here, we used an in vitro arterially perfused rat preparation to examine the role of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents. We recorded rhythmic inspiratory motor activity from one or both phrenic nerves before and during pharmacological blockade (i.e., uncoupling) of brain stem gap junctions using carbenoxolone (100 μM), 18α-glycyrrhetinic acid (25–100 μM), 18β-glycyrrhetinic acid (25–100 μM), octanol (200–300 μM), or heptanol (200 μM). During perfusion with a gap junction uncoupling agent, we observed an increase in the frequency of phrenic bursts (∼95% above baseline frequency; P < 0.001) and a decrease in peak amplitude of integrated phrenic nerve discharge ( P < 0.001). The increase in frequency of phrenic bursts resulted from a decrease in both T I ( P < 0.01) and T E ( P < 0.01). In addition, the pattern of phrenic nerve discharge shifted from an augmenting discharge pattern to a “bell-shaped” or square-wave discharge pattern in most experiments. Spectral analyses using a fast Fourier transform (FFT) algorithm revealed a reduction in the peak power of both the 40- to 50-Hz peak (corresponding to the MFO) and 90- to 110-Hz peak (corresponding to the HFO) although spurious higher frequency activity (≥130 Hz) was observed, suggesting an overall loss or reduction in inspiratory-phase synchronization. Although additional experiments are required to identify the specific brain stem regions and cell types (i.e., neurons, glia) mediating the observed modulations in phrenic motor output, these findings suggest that gap junction communication modulates generation of respiratory rhythm and inspiratory motoneuron synchronization in adult rodents in vitro.


1998 ◽  
Vol 274 (6) ◽  
pp. G1109-G1116 ◽  
Author(s):  
Eliseo A. Eugenín ◽  
Hernan González ◽  
Claudia G. Sáez ◽  
Juan C. Sáez

Because hepatocytes communicate via gap junctions, it has been proposed that Ca2+waves propagate through this pathway and in the process activate Ca2+-dependent cellular responses. We tested this hypothesis by measuring vasopressin-induced glycogenolysis in short-term cultures of rat hepatocytes. A 15-min vasopressin (10−8 M) stimulation induced a reduction of glycogen content that reached a maximum 1–3 h later. Gap junction blockers, octanol or 18α-glycyrrhetinic acid, reduced the effect by 70%. The glycogenolytic response induced by Ca2+ ionophore 8-bromo-A-21387, which acts on each hepatocyte, was not affected by gap junction blockers. Moreover, the vasopressin-induced glycogenolysis was lower (70%) in dispersed than in reaggregated hepatocytes and in dispersed hepatocytes was not affected by gap junction blockers. In hepatocytes reaggregated in the presence of a synthetic peptide homologous to a domain of the extracellular loop 1 of the main hepatocyte gap junctional protein, vasopressin-induced glycogenolysis and incidence of dye coupling were drastically reduced. Moreover, gap junctional communication was detected between reaggregated cells, suggesting that hepatocytes with different vasopressin receptor densities become coupled to each other. The vasopressin-induced effect was not affected by suramin, ruling out ATP as a paracrine mediator. We propose that gap junctions allow for a coordinated vasopressin-induced glycogenolytic response despite the heterogeneity among hepatocytes.


1990 ◽  
Vol 10 (4) ◽  
pp. 1754-1763 ◽  
Author(s):  
D S Crow ◽  
E C Beyer ◽  
D L Paul ◽  
S S Kobe ◽  
A F Lau

Gap junctions are membrane channels that permit the interchange of ions and other low-molecular-weight molecules between adjacent cells. Rous sarcoma virus (RSV)-induced transformation is marked by an early and profound disruption of gap-junctional communication, suggesting that these membrane structures may serve as sites of pp60v-src action. We have begun an investigation of this possibility by identifying and characterizing putative proteins involved in junctional communication in fibroblasts, the major cell type currently used to study RSV-induced transformation. We found that uninfected mammalian fibroblasts do not appear to contain RNA or protein related to connexin32, the major rat liver gap junction protein. In contrast, vole and mouse fibroblasts contained a homologous 3.0-kilobase RNA similar in size to the heart tissue RNA encoding the gap junction protein, connexin43. Anti-connexin43 peptide antisera specifically reacted with three proteins of approximately 43, 45 and 47 kilodaltons (kDa) from communicating fibroblasts. Gap junctions of heart cells contained predominantly 45- and 47-kDa species similar to those found in fibroblasts. Uninfected fibroblast 45- and 47-kDa proteins were phosphorylated on serine residues. Phosphatase digestions of 45- and 47-kDa proteins and pulse-chase labeling studies indicated that these proteins represented phosphorylated forms of the 43-kDa protein. Phosphorylation of connexin protein appeared to occur shortly after synthesis, followed by an equally rapid dephosphorylation. In comparison with these results, connexin43 protein in RSV-transformed fibroblasts contained both phosphotyrosine and phosphoserine. Thus, the presence of phosphotyrosine in connexin43 correlates with the loss of gap-junctional communication observed in RSV-transformed fibroblasts.


1998 ◽  
Vol 9 (8) ◽  
pp. 2249-2258 ◽  
Author(s):  
Fernando Lecanda ◽  
Dwight A. Towler ◽  
Konstantinos Ziambaras ◽  
Su-Li Cheng ◽  
Michael Koval ◽  
...  

Bone-forming cells are organized in a multicellular network interconnected by gap junctions. In these cells, gap junctions are formed by connexin43 (Cx43) and connexin45 (Cx45). Cx43 gap junctions form pores that are more permeable to negatively charged dyes such as Lucifer yellow and calcein than are Cx45 pores. We studied whether altering gap junctional communication by manipulating the relative expression of Cx43 and Cx45 affects the osteoblast phenotype. Transfection of Cx45 in cells that express primarily Cx43 (ROS 17/2.8 and MC3T3-E1) decreased both dye transfer and expression of osteocalcin (OC) and bone sialoprotein (BSP), genes pivotal to bone matrix formation and calcification. Conversely, transfection of Cx43 into cells that express predominantly Cx45 (UMR 106–01) increased both cell coupling and expression of OC and BSP. Transient cotransfection of promoter–luciferase constructs and connexin expression vectors demonstrated that OC and BSP gene transcription was down-regulated by Cx45 cotransfection in ROS 17/2.8 and MC3T3-E1 cells, in association with a decrease in dye coupling. Conversely, cotransfection of Cx43 in UMR 106–01 cells up-regulated OC and BSP gene transcription. Activity of other less specific osteoblast promoters, such as osteopontin and osteonectin, was less sensitive to changes in gap junctional communication. Thus, altering gap junctional permeability by manipulating the expression of Cx43 and Cx45 in osteoblastic cells alters transcriptional activity of osteoblast-specific promoters, presumably via modulation of signals that can diffuse from cell to cell. A communicating intercellular network is required for the full elaboration of a differentiated osteoblastic phenotype.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 113-118
Author(s):  
David L. Becker ◽  
Catherine Leclerc-David ◽  
Anne Warner

In the mouse embryo, gap junctions first appear at the 8-cell stage as compaction is about to take place. Compaction of the embryo is important for the differentiation of the first two cell types; the inner cell mass and the trophectoderm. Our studies examine the contribution of gap junctional communication at this stage of development We have characterised the normal sequence of appearance of gap junction protein and its distribution. The extent of communication as shown by the passage of dye between cells has been recorded in both normal embryos and embryos treated with drugs that influence gap junctional communication. Comparisons have been made with embryos that express a lethal gap junction defect and attempts were made to rescue such embryos by increasing their gap junction communication.


1994 ◽  
Vol 303 (2) ◽  
pp. 475-479 ◽  
Author(s):  
C S T Hill ◽  
S Y Oh ◽  
S A Schmidt ◽  
K J Clark ◽  
A W Murray

Lysophosphatidic acid (LPA) was shown to be a powerful inhibitor of gap-junctional communication between cultured rat liver WB cells, as determined by the transfer of Lucifer Yellow, with 50% inhibition obtained at about 0.3 microM LPA. Inhibition of communication was rapid (5 min) and was maintained for at least 80 min. After incubation for 3 h with LPA, communication competence was partially restored and dye transfer was refractory to further addition of LPA. Communication in LPA-refractory cells retained sensitivity to inhibition by phorbol ester and by epidermal growth factor (EGF). LPA-induced inhibition was associated with phosphorylation of connexin-43 protein, as detected by slower migration of the protein detected on Western blots, which could be eliminated by incubation of samples with alkaline phosphatase. A close correspondence was observed between the time- and dose-dependency of LPA effects on communication and the induction of mitogen-activated protein kinase (MAP kinase). Activation of both the 42 kDa and 44 kDa subspecies were confirmed by mobility shifts on Western blots using an anti-(MAP kinase R1) (erk 1-III) antibody and by fractionation on Mono Q columns. Cells pretreated with phorbol ester for 24 h were insensitive to phorbol ester inhibition of communication or activation of MAP kinase, but retained their sensitivity to LPA. The results indicate that LPA initiates the activation of protein kinase cascades in WB cells that are probably independent of protein kinase C and identifies connexin-43 as one substrate for the activated kinases.


Sign in / Sign up

Export Citation Format

Share Document