scholarly journals Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic α-mannosyltransferases

1996 ◽  
Vol 318 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Roberto A GEREMIA ◽  
E Alejandro PETRONI ◽  
Luis IELPI ◽  
Bernard HENRISSAT

A number of genes encoding bacterial glycosyltransferases have been sequenced during the last few years, but their low sequence similarity has prevented a straightforward grouping of these enzymes into families. The sequences of several bacterial α-mannosyltransferases have been compared using current alignment algorithms as well as hydrophobic cluster analysis (HCA). These sequences show a similarity which is significant but too low to be reliably aligned using automatic alignment methods. However, a region spanning approx. 270 residues in these proteins could be aligned by HCA, and several invariant amino acid residues were identified. These features were also found in several other glycosyltransferases, as well as in proteins of unknown function present in sequence databases. This similarity most probably reflects the existence of a family of proteins with conserved structural and mechanistic features. It is argued that the present IUBMB classification of glycosyltransferases could be complemented by a classification of these enzymes based on sequence similarities analogous to that which we proposed for glycosyl hydrolases [Henrissat, B. (1991) Biochem. J. 280, 309–316].

1991 ◽  
Vol 280 (2) ◽  
pp. 309-316 ◽  
Author(s):  
B Henrissat

The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised.


1993 ◽  
Vol 293 (3) ◽  
pp. 781-788 ◽  
Author(s):  
B Henrissat ◽  
A Bairoch

301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank.


2000 ◽  
Vol 350 (2) ◽  
pp. 369-379 ◽  
Author(s):  
Dietrich LOEBEL ◽  
Andrea SCALONI ◽  
Sara PAOLINI ◽  
Carlo FINI ◽  
Lino FERRARA ◽  
...  

Boar submaxillary glands produce the sex-specific salivary lipocalin (SAL), which binds steroidal sex pheromones as endogenous ligands. The cDNA encoding SAL was cloned and sequenced. From a single individual, two protein isoforms, differing in three amino acid residues, were purified and structurally characterized by a combined Edman degradation/MS approach. These experiments ascertained that the mature polypeptide is composed of 168 amino acid residues, that one of the three putative glycosylation sites is post-translationally modified and the structure of the bound glycosidic moieties. Two of the cysteine residues are paired together in a disulphide bridge, whereas the remaining two occur as free thiols. SAL bears sequence similarity to other lipocalins; on this basis, a three-dimensional model of the protein has been built. A SAL isoform was expressed in Escherichiacoli in good yields. Protein chemistry and CD experiments verified that the recombinant product shows the same redox state at the cysteine residues and that the same conformation is observed as in the natural protein, thus suggesting similar folding. Binding experiments on natural and recombinant SAL were performed with the fluorescent probe 1-aminoanthracene, which was efficiently displaced by the steroidal sex pheromone, as well as by several odorants.


1996 ◽  
Vol 43 (3) ◽  
pp. 507-513 ◽  
Author(s):  
D Stachowiak ◽  
A Polanowski ◽  
G Bieniarz ◽  
T Wilusz

Two serine proteinase inhibitors (ELTI I and ELTI II) have been isolated from mature seeds of Echinocystis lobata by ammonium sulfate fractionation, methanol precipitation, ion exchange chromatography, affinity chromatography on immobilized anhydrotrypsin and HPLC. ELTI I and ELTI II consist of 33 and 29 amino-acid residues, respectively. The primary structures of these inhibitors are as follows: ELTI I KEEQRVCPRILMRCKRDSDCLAQCTCQQSGFCG ELTI II RVCPRILMRCKRDSDCLAQCTCQQSGFCG The inhibitors show sequence similarity with the squash inhibitor family. ELTI I differs from ELTI II only by the presence of the NH2-terminal tetrapeptide Lys-Glu-Glu-Gln. The association constants (Ka) of ELTI I and ELTI II with bovine-trypsin were determined to be 6.6 x 10(10) M-1, and 3.1 x 10(11) M-1, whereas the association constants of these inhibitors with cathepsin G were 1.2 x 10(7) M-1, and 1.1 x 10(7) M-1, respectively.


1998 ◽  
Vol 329 (3) ◽  
pp. 719-719 ◽  
Author(s):  
J. A. CAMPBELL ◽  
G. J. DAVIES ◽  
V. BULONE ◽  
B. HENRISSAT

2006 ◽  
Vol 284 (6) ◽  
pp. 575-585 ◽  
Author(s):  
Ivan M. Okhapkin ◽  
Andrei A. Askadskii ◽  
Vladimir A. Markov ◽  
Elena E. Makhaeva ◽  
Alexei R. Khokhlov

1999 ◽  
Vol 342 (3) ◽  
pp. 721-728 ◽  
Author(s):  
Eiji ARIMITSU ◽  
Shinya AOKI ◽  
Syuhei ISHIKURA ◽  
Kumiko NAKANISHI ◽  
Kazuya MATSUURA ◽  
...  

Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins.


1990 ◽  
Vol 69 (11) ◽  
pp. 1717-1723 ◽  
Author(s):  
T. Xu ◽  
E. Telser ◽  
R.F. Troxler ◽  
F.G. Oppenheim

A major macaque histatin (M-histatin 1) from the parotid secretion of the subhuman primate, Macaca fascicularis, was isolated by gel filtration on Bio-Gel P-2 and purified to homogeneity by reversed-phase high-performance liquid chromatography on a TSK-ODS C18 column. The complete amino acid sequence of M-histatin 1, determined by automated Edman degradation, is: 1 10 20 Asp-Pse-His-Glu-Glu-Arg-His-His-Gly-Arg-His-Gly-His-His-Lys-Tyr-Gly-Arg-Lys-Phe 21 30 38 His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr-Arg-Ser-Asn-Tyr-Leu-Tyr-Asp-Asn M-histatin 1 contains 38 amino acid residues, a phosphoserine at residue 2, has a molecular weight of 4881.8, a calculated pI of 8.5, and histidine forms 26.3% of the mass. The hydropathicity plot of M-histatin 1 predicts that the molecule is entirely hydrophilic, and Chou-Fasman secondary prediction indicates that the polypeptide is devoid of alpha-helix and beta-sheet conformation in aqueous solutions but contains a series of beta turns. M-histatin 1 includes a six-amino-acid insert (residue 10-15) not present in human histatins and, with the introduction of gaps to maximize homology, it displays 89% and 91% sequence similarity with human histatins 1 and 3, respectively. M-histatin 1 exhibited fungicidal and fungistatic effects against the dimorphic pathogen, Candida albicans, in three separate bioassays. Its anticandidal effects were comparable with or greater than those of human histatins 1, 3, and 5. M-histatins 2, 3, and 4 were not sequenced directly because insufficient materials were available, but the amino acid composition of M-histatin 3 was nearly identical to that of the N-terminal 20 amino acid residues of M-histatin 1. There appears to be only one major histatin in macaque parotid secretion in contrast to the family of histatins in human parotid and submandibular secretions, and the significance of this in the context of evolution and mechanism of action in anticandidal assays is discussed.


Sign in / Sign up

Export Citation Format

Share Document