Two-dimensional classification of amphiphilic monomers based on interfacial and partitioning properties. 2. Amino acids and amino acid residues

2006 ◽  
Vol 284 (6) ◽  
pp. 575-585 ◽  
Author(s):  
Ivan M. Okhapkin ◽  
Andrei A. Askadskii ◽  
Vladimir A. Markov ◽  
Elena E. Makhaeva ◽  
Alexei R. Khokhlov
1967 ◽  
Vol 34 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. H. Abd El-Salam ◽  
W. Manson

SummaryWhen κ-casein from buffalo's milk was treated with carboxypeptidase A (EC 3. 4. 2. 1),4 amino acids, valine, threonine, serine and alanine were released from the protein in a manner consistent with the view that they originate in the C-terminal sequence of a single peptide chain. The amounts produced suggest a minimum molecular weight for buffalo κ-casein of approximately 17000, in agreement with the value calculated from the phosphorous content on the basis of the presence of 2 phosphorus atoms/molecule. A comparison is made with the C-terminal sequence reported for bovine κ-casein.


2015 ◽  
Vol 39 (5) ◽  
pp. 3319-3326 ◽  
Author(s):  
Madhusudana M. B. Reddy ◽  
K. Basuroy ◽  
S. Chandrappa ◽  
B. Dinesh ◽  
B. Vasantha ◽  
...  

γn amino acid residues can be incorporated into structures in γn and hybrid sequences containing folded and extended α and δ residues.


2019 ◽  
Vol 24 (9) ◽  
pp. 928-938 ◽  
Author(s):  
Luca Palazzolo ◽  
Chiara Paravicini ◽  
Tommaso Laurenzi ◽  
Sara Adobati ◽  
Simona Saporiti ◽  
...  

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure–function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


1992 ◽  
Vol 286 (3) ◽  
pp. 761-769 ◽  
Author(s):  
F P Barry ◽  
J U Gaw ◽  
C N Young ◽  
P J Neame

The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.


ChemInform ◽  
2010 ◽  
Vol 30 (34) ◽  
pp. no-no
Author(s):  
Phillip A. Coghlan ◽  
Christopher J. Easton

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andre Then ◽  
Karel Mácha ◽  
Bashar Ibrahim ◽  
Stefan Schuster

Abstract The classification of proteinogenic amino acids is crucial for understanding their commonalities as well as their differences to provide a hint for why life settled on the usage of precisely those amino acids. It is also crucial for predicting electrostatic, hydrophobic, stacking and other interactions, for assessing conservation in multiple alignments and many other applications. While several methods have been proposed to find “the” optimal classification, they have several shortcomings, such as the lack of efficiency and interpretability or an unnecessarily high number of discriminating features. In this study, we propose a novel method involving a repeated binary separation via a minimum amount of five features (such as hydrophobicity or volume) expressed by numerical values for amino acid characteristics. The features are extracted from the AAindex database. By simple separation at the medians, we successfully derive the five properties volume, electron–ion-interaction potential, hydrophobicity, α-helix propensity, and π-helix propensity. We extend our analysis to separations other than by the median. We further score our combinations based on how natural the separations are.


Sign in / Sign up

Export Citation Format

Share Document