scholarly journals Lecithin hydrophobicity modulates the process of cholesterol crystal nucleation and growth in supersaturated model bile systems

1996 ◽  
Vol 318 (1) ◽  
pp. 139-144 ◽  
Author(s):  
Hidenori OCHI ◽  
Susumu TAZUMA ◽  
Goro KAJIYAMA

The present study was performed to determine whether the degree of lecithin hydrophobicity regulates bile metastability and, therefore, affects the process of cholesterol crystallization. Supersaturated model bile (MB) solutions were prepared with an identical composition on a molar basis (taurocholate/lecithin/cholesterol, 73:19.5:7.5; total lipid concentration 9 g/dl) except for the lecithin species; egg yolk phosphatidylcholine, soybean phosphatidylcholine, 1-palmitoyl-2-linoleoyl-sn-phosphatidylcholine, dilinoleoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine. Each MB solution was incubated and sequentially examined. Video-enhanced contrast microscopy demonstrated that the rate of vesicular aggregation and fusion correlated with the degree of lecithin hydrophobicity, and that the rate of cholesterol crystal nucleation correlated with the degree of lecithin hydrophilicity. In MBs containing less hydrophobic lecithin, needle-like crystals developed and transformed into mature plate-like crystals, whereas classical plate-like crystals were consistently observed in MBs composed of hydrophobic lecithin. Laser-diffraction particle size analysis demonstrated that the increase in lecithin hydrophobicity enlarged the vesicle dimension, enhancing its cholesterol-holding capacity. Correlation between vesicular cholesterol packing density and lecithin hydrophobicity suggests that the process of bile cholesterol nucleation and growth is regulated, in part, by acyl chain unsaturation in lecithin. Since the composition of biliary lecithins is responsive to dietary manipulations, this study provides new insights into the prevention of cholesterol gallstones.

Kanzo ◽  
1991 ◽  
Vol 32 (12) ◽  
pp. 1132-1137
Author(s):  
Seishi TAO ◽  
Susumu TAZUMA ◽  
Shigeki MIZUNO ◽  
Harutoshi SASAKI ◽  
Hiroshi SAGAWA ◽  
...  

Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Circular ◽  
1985 ◽  
Author(s):  
Lawrence J. Poppe ◽  
A.H. Eliason ◽  
J.J. Fredericks

Sign in / Sign up

Export Citation Format

Share Document