egg yolk phosphatidylcholine
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 16 ◽  
Author(s):  
Zhihui Yu ◽  
Liyuan Zhou ◽  
Ling Ma ◽  
Huiling Duan ◽  
Yingchun Zhu

This study aimed to evaluate the effects of dietary egg yolk phosphatidylcholine (EPC) and soybean phosphatidylcholine (SPC) on obesity mice fed a high-fat diet (HFD). After 60 days of dietary intervention, the effects were evaluated by biochemical indices and serum lipidomic analysis. EPC and SPC markedly reduced serum total cholesterol, serum triacylglycerol (TAG) and low-density lipoprotein cholesterol, while increased high-density lipoprotein cholesterol. EPC was more effective in reducing malondialdehyde and superoxide dismutase in liver than SPC. Main lipids including glycerophospholipids, TAG, sphingolipids and fatty acyls were significantly modified by EPC. Compared with HFD, EPC increased 10 main differential lipids such as phosphatidyl ethanolamine (22:6_20:0). The expressions of related protein including sterol-regulatory element binding proteins sterol-regulatory element binding proteins (SREBP-1c) and peroxisome proliferator-activated receptor α (PPAR-α) were significantly down-regulated with EPC treatment. Therefore, EPC was more effective than SPC in improving obesity by regulating glycerophospholipid metabolism.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Marta Okulus ◽  
Magdalena Rychlicka ◽  
Anna Gliszczyńska

Enzymatic acidolysis of egg-yolk phosphatidylcholine (PC) with 3-methoxycinnamic acid (3-OMe-CA) was investigated to produce biologically active 3-methoxycinnamoylated phospholipids. Four commercially available lipases were screened for their ability to incorporate 3-OMe-CA into PC. The results showed that Novozym 435 is the most effective biocatalyst for this process, while during the examination of organic solvents, heptane was found propriate reaction medium. The other reaction parameters including the substrate molar ratio, enzyme load and reaction time were designed using an experimental factorial design method. According to three-level-3-factor Box-Behnken model it was shown that all of studied parameters are crucial variables for the maximization of the synthesis of structured PLs. The optimum conditions derived via response surface methodology (RSM) were: 30% of lipase of the total weight of substrates, 1:15 molar ration of PC/3-OMe-CA and reaction time 4 days. The process of acidolysis performed on the increased scale at optimized parameters afforded two products. The major product, 3-methoxycinnamoylated lysophosphatidylcholine (3-OMe-CA-LPC) was isolated in high 48% yield, while 3-methoxycinnamoylated phosphatidylcholine (3-OMe-CA-PC) was produced in trace amount only in 1.2% yield. Obtained results indicate that presented biotechnological method of synthesis of 3-methoxycinnamoylated lysophosphatidylcholine is competitive to the previously reported chemical one.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 588
Author(s):  
Magdalena Rychlicka ◽  
Natalia Niezgoda ◽  
Anna Gliszczyńska

The interesterification reaction of egg-yolk phosphatidylcholine (PC) with ethyl ester of 3,4-dimethoxycinnamic acid (E3,4DMCA) catalyzed by Novozym 435 in hexane as a reaction medium was shown to be an effective method for the synthesis of corresponding structured O-methylated phenophospholipids. The effects of substrate molar ratios, time of the reaction and enzyme load on the process of incorporation of 3,4DMCA into PC were evaluated by using the experimental factorial design of three factors and three levels. The results showed that a substrate molar ratio is a crucial variable for the maximization of the synthesis of 3,4-dimethoxycinnamoylated phospholipids. Under optimized parameters of 1/10 substrate molar ratio PC/E3,4DMCA, enzyme load 30% (w/w), hexane as a medium and incubation time of 3 days, the incorporation of aromatic acid into phospholipid fraction reached 21 mol%. The modified phosphatidylcholine (3,4DMCA-PC) and modified lysophosphatidylcholine (3,4DMCA-LPC) were obtained in isolated yields of 3.5% and 27.5% (w/w), respectively. The developed method of phosphatidylcholine interesterification is the first described in the literature dealing with 3,4DMCA and allows us to obtain new O-methylated phenophospholipids with potential applications as food additives or nutraceuticals with pro-health activity.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 538 ◽  
Author(s):  
Marta Okulus ◽  
Anna Gliszczyńska

Lipase-catalyzed acidolysis reactions of egg-yolk phosphatidylcholine (PC) with anisic (ANISA) and veratric (VERA) acids were investigated to develop a biotechnological method for the production of corresponding biologically active O-methylated phenophospholipids. Screening experiments with four commercially available immobilized lipases indicated that the most effective biocatalyst for the incorporation of ANISA into phospholipids was Novozym 435. None of the tested enzymes were able to catalyze the synthesis of PC structured with VERA. The effects of different solvents, substrate molar ratios, temperature, enzyme loading, and time of the reaction on the process of incorporation of ANISA into the phospholipids were evaluated in the next step of the study. The mixture of toluene/chloroform in the ratio 9:1 (v/v) significantly increased the incorporation of ANISA into PC. The acidolysis reaction was carried out using the selected binary solvent system, 1/15 substrate molar ratio PC/ANISA, 30% (w/w) enzyme load, and temperature of 50 °C afforded after 72 h anisoylated lysophosphatidylcholine (ANISA-LPC) and anisoylated phosphatidylcholine (ANISA-PC) in isolated yields of 28.5% and 2.5% (w/w), respectively. This is the first study reporting the production of ANISA-LPC and ANISA-PC via a one-step enzymatic method, which is an environmentally friendly alternative to the chemical synthesis of these biologically active compounds.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 451 ◽  
Author(s):  
Liuli Xv ◽  
Xinxin Qian ◽  
Yan Wang ◽  
Chenghuan Yu ◽  
Dingkui Qin ◽  
...  

This study aims to stabilize loaded celecoxib (CX) by modifying the structure of casein nanoparticles through phosphatidylcholine. The results show that Egg yolk phosphatidylcholine PC98T (PC) significantly increased the stability of CX-PC-casein nanoparticles (NPs) (192.6 nm) from 5 min (CX-β-casein-NPs) to 2.5 h at 37 °C. In addition, the resuspended freeze-dried NPs (202.4 nm) remained stable for 2.5 h. Scanning electron microscopy indicated that PC may block the micropore structures in nanoparticles by ultrasonic treatment and hence improve the physicochemical stability of CX-PC-casein-NPs. The stability of the NPs was positively correlated with their inhibiting ability for human malignant melanoma A375 cells. The structural modification of CX-PC-casein-NPs resulted in an increased intracellular uptake of CX by 2.4 times than that of the unmodified ones. The pharmacokinetic study showed that the Area Under Curve (AUC) of the CX-PC-casein-NPs was 2.9-fold higher in rats than that of the original casein nanoparticles. When CX-PC-casein-NPs were intravenously administrated to mice implanted with A375 tumors (CX dose = 16 mg/kg bodyweight), the tumor inhibition rate reached 56.2%, which was comparable to that of paclitaxel (57.3%) at a dose of 4 mg/kg bodyweight. Our results confirm that the structural modification of CX-PC-casein-NPs can effectively prolong the remaining time of specific drugs, and may provide a potential strategy for cancer treatment.


2019 ◽  
Vol 56 ◽  
pp. 372-383 ◽  
Author(s):  
Jin Chen ◽  
Songyi Lin ◽  
Na Sun ◽  
Zhijie Bao ◽  
Jiaying Shen ◽  
...  

2018 ◽  
Vol 28 (3) ◽  
pp. 99-106
Author(s):  
Laura Emilce Navas ◽  
Mónica Florin-Christensen ◽  
Graciela Beatriz Benintende ◽  
Rubén Oreste Zandomeni ◽  
Marcelo Facundo Berretta

Phospholipases are classified in different enzyme families according to the ester bond they cleave within phospholipids. The use of phospholipases in industrial processes has prompted the search for new enzymes with differential properties. A gene encoding a novel phospholipase (PLP_2.9) was identified in the genome of the thermophilic strain <i>Thermus</i> sp. 2.9. The analysis of the primary sequence unveiled a patatin-like domain. The alignment of the amino acid sequence of PLP_2.9 to other bacterial patatin-related proteins showed that the four blocks characteristic of this type of phospholipases and the amino acids representing the catalytic dyad are conserved in this protein. PLP_2.9 was overexpressed in <i>Escherichia coli</i> and the purified enzyme was characterized biochemically. PLP_2.9<i></i> hydrolyzed <i>p</i>-nitrophenyl palmitate at alkaline pH over a wide range of temperatures (55–80°C), showing high thermostability. PLP_2.9 displayed phospholipase A and acyltransferase activities on egg yolk phosphatidylcholine. Due to its high thermostability, PLP_2.9 has potential applications as a catalyst in several industrial processes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3524 ◽  
Author(s):  
Priscila Sutto-Ortiz ◽  
María de los Angeles Camacho-Ruiz ◽  
Manuel R. Kirchmayr ◽  
Rosa María Camacho-Ruiz ◽  
Juan Carlos Mateos-Díaz ◽  
...  

Novel microbial phospholipases A (PLAs) can be found in actinomycetes which have been poorly explored as producers of this activity. To investigate microbial PLA production, efficient methods are necessary such as high-throughput screening (HTS) assays for direct search of PLAs in microbial cultures and cultivation conditions to promote this activity. About 200 strains isolated with selected media for actinomycetes and mostly belonging toStreptomyces(73%) andMicromonospora(10%) genus were first screened on agar-plates containing the fluorophore rhodamine 6G and egg yolk phosphatidylcholine (PC) to detect strains producing phospholipase activity. Then, a colorimetric HTS assay for general PLA activity detection (cHTS-PLA) using enriched PC (≈60%) as substrate and cresol red as indicator was developed and applied; this cHTS-PLA assay was validated with known PLAs. For the first time, actinomycete strains were cultivated by solid-state fermentation (SSF) using PC as inductor and sugar-cane bagasse as support to produce high PLA activity (from 207 to 2,591 mU/g of support). Phospholipase activity of the enzymatic extracts from SSF was determined using the implemented cHTS-PLA assay and the PC hydrolysis products obtained, were analyzed by TLC showing the presence of lyso-PC. Three actinomycete strains of theStreptomycesgenus that stood out for high accumulation of lyso-PC, were selected and analyzed with the specific substrate 1,2-α-eleostearoyl-sn-glycero-3-phosphocholine (EEPC) in order to confirm the presence of PLA activity in their enzymatic extracts. Overall, the results obtained pave the way toward the HTS of PLA activity in crude microbial enzymatic extracts at a larger scale. The cHTS-PLA assay developed here can be also proposed as a routine assay for PLA activity determination during enzyme purification,directed evolution or mutagenesis approaches. In addition, the production of PLA activity by actinomycetes using SSF allow find and produce novel PLAs with potential applications in biotechnology.


Sign in / Sign up

Export Citation Format

Share Document