scholarly journals Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: stoichiometry and cellulolytic activity of the complexes

1997 ◽  
Vol 326 (2) ◽  
pp. 617-624 ◽  
Author(s):  
Irina KATAEVA ◽  
Gérard GUGLIELMI ◽  
Pierre BÉGUIN

Four mini-scaffoldins were constructed from modules derived from the Clostridium thermocellum cellulosome-integrating protein CipA. Cip7 and Cip6 contained one and two cohesin modules respectively. Cip14 and Cip16, also containing one and two cohesin modules respectively, were flanked by a cellulose-binding domain. Endoglucanase CelD formed stable complexes with all mini-scaffoldins. Analytical ultracentrifugation of the complexes showed that 1 mol of CelD bound per mol of Cip14, and 2 mol of CelD bound per mol of Cip16. Under the conditions used for assaying cellulase activity, 96% of CelD alone bound to Avicel. Association with Cip14 or Cip16 increased the cellulose binding of CelD to 99%, while association with Cip7 or Cip6 decreased binding to 79 and 75% respectively. The hydrolytic activity of CelD against Avicel was increased 3-fold in complexes with Cip14 and Cip16, but remained substantially the same in complexes with Cip6 and Cip7. Addition of whole CipA also enhanced the efficiency of Avicel hydrolysis by CelD. However, even at an optimal ratio of the components, CelD–CipA complexes were somewhat less active than complexes of CelD with Cip14 or Cip16. These results suggest that the synergism observed between CelD and Cip14 or Cip16 is mostly due to the presence of the cellulose-binding domain, which promotes productive binding of the enzyme.

2001 ◽  
Vol 183 (5) ◽  
pp. 1552-1559 ◽  
Author(s):  
Irina A. Kataeva ◽  
Ronald D. Seidel ◽  
Xin-Liang Li ◽  
Lars G. Ljungdahl

ABSTRACT The family IV cellulose-binding domain of Clostridium thermocellum CelK (CBDCelK) was expressed inEscherichia coli and purified. It binds to acid-swollen cellulose (ASC) and bacterial microcrystalline cellulose (BMCC) with capacities of 16.03 and 3.95 μmol/g of cellulose and relative affinities (K r) of 2.33 and 9.87 liters/g, respectively. The CBDCelK is the first representative of family IV CBDs to exhibit an affinity for BMCC. The CBDCelKalso binds to the soluble polysaccharides lichenin, glucomannan, and barley β-glucan, which are substrates for CelK. It does not bind to xylan, galactomannan, and carboxymethyl cellulose. The CBDCelK contains 1 mol of calcium per mol. The CBDCelK has three thiol groups and one disulfide, reduction of which results in total loss of cellulose-binding ability. To reveal amino acid residues important for biological function of the domain and to investigate the role of calcium in the CBDCelK four highly conserved aromatic residues (Trp56, Trp94, Tyr111, and Tyr136) and Asp192 were mutated into alanines, giving the mutants W56A, W94A, Y111A, Y136A, and D192A. In addition 14 N-terminal amino acids were deleted, giving the CBD-NCelK. The CBD-NCelK and D192A retained binding parameters close to that of the intact CBDCelK, W56A and W94A totally lost the ability to bind to cellulose, Y136A bound to both ASC and BMCC but with significantly reduced binding capacity and K rand Y111A bound weakly to ASC and did not bind to BMCC. Mutations of the aromatic residues in the CBDCelK led to structural changes revealed by studying solubility, circular-dichroism spectra, dimer formation, and aggregation. Calcium content was drastically decreased in D192A. The results suggest that Asp192 is in the calcium-binding site of the CBDCelK and that calcium does not affect binding to cellulose. The 14 amino acids from the N terminus of the CBDCelK are not important for binding. Tyr136, corresponding to Cellulomonas fimi CenC CBDN1Y85, located near the binding cleft, might be involved in the formation of the binding surface, while Y111, W56A, and W94A are essential for the binding process by keeping the CBDCelK correctly folded.


1994 ◽  
Vol 244 (2) ◽  
pp. 236-237 ◽  
Author(s):  
Raphael Lamed ◽  
José Tormo ◽  
Arthur J. Chirino ◽  
Ely Morag ◽  
Edward A. Bayer

1991 ◽  
Vol 273 (2) ◽  
pp. 289-293 ◽  
Author(s):  
A J Durrant ◽  
J Hall ◽  
G P Hazlewood ◽  
H J Gilbert

Mature endoglucanase E (EGE) from Clostridium thermocellum consists of 780 amino acid residues and has an Mr of 84,016. The N-terminal 334 amino acids comprise a functional catalytic domain. Full-length EGE bound to crystalline cellulose (Avicel) but not to xylan. Bound enzyme could be eluted with distilled water. The capacity of truncated derivatives of the enzyme to bind cellulose was investigated. EGE lacking 109 C-terminal residues (EGEd) or a derivative in which residues 367-432 of the mature form of the enzyme had been deleted (EGEb), bound to Avicel, whereas EGEa and EGEc, which lack 416 and 246 C-terminal residues respectively, did not. The specific activity of EGEa, consisting of the N-terminal 364 amino acids, was 4-fold higher than that of the full-length enzyme. The truncated derivative also exhibited lower affinity for the substrate beta-glucan than the full-length enzyme. It is concluded that EGE contains a cellulose-binding domain, located between residues 432 and 671, that is distinct from the active site. The role of this substrate-binding domain is discussed.


1999 ◽  
Vol 12 (7) ◽  
pp. 585-591 ◽  
Author(s):  
Marie-Noëlle Rosso ◽  
Bruno Favery ◽  
Christine Piotte ◽  
Laury Arthaud ◽  
Jan M. De Boer ◽  
...  

A β-1,4-endoglucanase encoding cDNA (EGases, E.C. 3.2.1.4), named Mi-eng-1, was cloned from Meloidogyne incognita second-stage juveniles (J2). The deduced amino acid sequence contains a catalytic domain and a cellulose-binding domain separated by a linker. In M. incognita, the gene is transcribed in the migratory J2, in males, and in the sedentary adult females. In pre-parasitic J2, endoglucanase transcripts are located in the cytoplasm of the subventral esophageal glands. The presence of β-1,4-endoglucanase transcripts in adult females could be related to the expression of the gene in esophageal glands at this stage. However, cellulase activity within the egg matrix of adult females suggests that the endoglucanase may also be synthesized in the rectal glands and involved in the extrusion of the eggs onto the root surface. The maximum identity of the predicted MI-ENG-1 catalytic domain with the recently cloned cyst nematode β-1,4-endoglucanases is 52.5%. In contrast to cyst nematodes, M. incognita pre-parasitic J2 were not found to express a β-1,4-endoglucanase devoid of a cellulose-binding domain.


1999 ◽  
Vol 339 (2) ◽  
pp. 429-434
Author(s):  
J. Greg DOHENY ◽  
Eric J. JERVIS ◽  
M. Marta GUARNA ◽  
R. Keith HUMPHRIES ◽  
R. Antony J. WARREN ◽  
...  

A chimaera of stem cell factor (SCF) and a cellulose-binding domain from the xylanase Cex (CBDCex) effectively immobilizes SCF on a cellulose surface. The fusion protein retains both the cytokine properties of SCF and the cellulose-binding characteristics of CBDCex. When adsorbed on cellulose, SCF–CBDCex is up to 7-fold more potent than soluble SCF–CBDCex and than native SCF at stimulating the proliferation of factor-dependent cell lines. When cells are incubated with cellulose-bound SCF–CBDCex, activated receptors and SCF–CBDCex co-localize on the cellulose matrix. The strong binding of SCF–CBDCex to the cellulose surface permits the effective and localized stimulation of target cells; this is potentially significant for long-term perfusion culturing of factor-dependent cells. It also permits the direct analysis of the effects of surface-bound cytokines on target cells.


Sign in / Sign up

Export Citation Format

Share Document