scholarly journals Isolation of a cDNA Encoding a β-1,4-endoglucanase in the Root-Knot Nematode Meloidogyne incognita and Expression Analysis During Plant Parasitism

1999 ◽  
Vol 12 (7) ◽  
pp. 585-591 ◽  
Author(s):  
Marie-Noëlle Rosso ◽  
Bruno Favery ◽  
Christine Piotte ◽  
Laury Arthaud ◽  
Jan M. De Boer ◽  
...  

A β-1,4-endoglucanase encoding cDNA (EGases, E.C. 3.2.1.4), named Mi-eng-1, was cloned from Meloidogyne incognita second-stage juveniles (J2). The deduced amino acid sequence contains a catalytic domain and a cellulose-binding domain separated by a linker. In M. incognita, the gene is transcribed in the migratory J2, in males, and in the sedentary adult females. In pre-parasitic J2, endoglucanase transcripts are located in the cytoplasm of the subventral esophageal glands. The presence of β-1,4-endoglucanase transcripts in adult females could be related to the expression of the gene in esophageal glands at this stage. However, cellulase activity within the egg matrix of adult females suggests that the endoglucanase may also be synthesized in the rectal glands and involved in the extrusion of the eggs onto the root surface. The maximum identity of the predicted MI-ENG-1 catalytic domain with the recently cloned cyst nematode β-1,4-endoglucanases is 52.5%. In contrast to cyst nematodes, M. incognita pre-parasitic J2 were not found to express a β-1,4-endoglucanase devoid of a cellulose-binding domain.

1997 ◽  
Vol 326 (2) ◽  
pp. 617-624 ◽  
Author(s):  
Irina KATAEVA ◽  
Gérard GUGLIELMI ◽  
Pierre BÉGUIN

Four mini-scaffoldins were constructed from modules derived from the Clostridium thermocellum cellulosome-integrating protein CipA. Cip7 and Cip6 contained one and two cohesin modules respectively. Cip14 and Cip16, also containing one and two cohesin modules respectively, were flanked by a cellulose-binding domain. Endoglucanase CelD formed stable complexes with all mini-scaffoldins. Analytical ultracentrifugation of the complexes showed that 1 mol of CelD bound per mol of Cip14, and 2 mol of CelD bound per mol of Cip16. Under the conditions used for assaying cellulase activity, 96% of CelD alone bound to Avicel. Association with Cip14 or Cip16 increased the cellulose binding of CelD to 99%, while association with Cip7 or Cip6 decreased binding to 79 and 75% respectively. The hydrolytic activity of CelD against Avicel was increased 3-fold in complexes with Cip14 and Cip16, but remained substantially the same in complexes with Cip6 and Cip7. Addition of whole CipA also enhanced the efficiency of Avicel hydrolysis by CelD. However, even at an optimal ratio of the components, CelD–CipA complexes were somewhat less active than complexes of CelD with Cip14 or Cip16. These results suggest that the synergism observed between CelD and Cip14 or Cip16 is mostly due to the presence of the cellulose-binding domain, which promotes productive binding of the enzyme.


1993 ◽  
Vol 294 (2) ◽  
pp. 349-355 ◽  
Author(s):  
L M Ferreira ◽  
T M Wood ◽  
G Williamson ◽  
C Faulds ◽  
G P Hazlewood ◽  
...  

The 5′ regions of genes xynB and xynC, coding for a xylanase and arabinofuranosidase respectively, are identical and are reiterated four times within the Pseudomonas fluorescens subsp. cellulosa genome. To isolate further copies of the reiterated xynB/C 5′ region, a genomic library of Ps. fluorescens subsp. cellulosa DNA was screened with a probe constructed from the conserved region of xynB. DNA from one phage which hybridized to the probe, but not to sequences upstream or downstream of the reiterated xynB/C locus, was subcloned into pMTL22p to construct pFG1. The recombinant plasmid expressed a protein in Escherichia coli, designated esterase XYLD, of M(r) 58,500 which bound to cellulose but not to xylan. XYLD hydrolysed aryl esters, released acetate groups from acetylxylan and liberated 4-hydroxy-3-methoxycinnamic acid from destarched wheat bran. The nucleotide sequence of the XYLD-encoding gene, xynD, revealed an open reading frame of 1752 bp which directed the synthesis of a protein of M(r) 60,589. The 5′ 817 bp of xynD and the amino acid sequence between residues 37 and 311 of XYLD were almost identical with the corresponding regions of xynB and xynC and their encoded proteins XYLB and XYLC. Truncated derivatives of XYLD lacking the N-terminal conserved sequence retained the capacity to hydrolyse ester linkages, but did not bind cellulose. Expression of truncated derivatives of xynD, comprising the 5′ 817 bp sequence, encoded a non-catalytic polypeptide that bound cellulose. These data indicate that XYLD has a modular structure comprising of a N-terminal cellulose-binding domain and a C-terminal catalytic domain.


1991 ◽  
Vol 273 (2) ◽  
pp. 289-293 ◽  
Author(s):  
A J Durrant ◽  
J Hall ◽  
G P Hazlewood ◽  
H J Gilbert

Mature endoglucanase E (EGE) from Clostridium thermocellum consists of 780 amino acid residues and has an Mr of 84,016. The N-terminal 334 amino acids comprise a functional catalytic domain. Full-length EGE bound to crystalline cellulose (Avicel) but not to xylan. Bound enzyme could be eluted with distilled water. The capacity of truncated derivatives of the enzyme to bind cellulose was investigated. EGE lacking 109 C-terminal residues (EGEd) or a derivative in which residues 367-432 of the mature form of the enzyme had been deleted (EGEb), bound to Avicel, whereas EGEa and EGEc, which lack 416 and 246 C-terminal residues respectively, did not. The specific activity of EGEa, consisting of the N-terminal 364 amino acids, was 4-fold higher than that of the full-length enzyme. The truncated derivative also exhibited lower affinity for the substrate beta-glucan than the full-length enzyme. It is concluded that EGE contains a cellulose-binding domain, located between residues 432 and 671, that is distinct from the active site. The role of this substrate-binding domain is discussed.


1999 ◽  
Vol 45 (11) ◽  
pp. 970-974 ◽  
Author(s):  
Jin-Hao Liu ◽  
Brent L Selinger ◽  
Cheng-Fang Tsai ◽  
Kuo-Jaon Cheng

A xylanase gene (xynC) isolated from the anaerobic ruminal fungus Neocallimastix patriciarum was characterized. The gene consists of an N-terminal catalytic domain that exhibited homology to family 11 of glycosyl hydrolases, a C-terminal cellulose binding domain (CBD) and a putative dockerin domain in between. Each domain was linked by a short linker domain rich in proline and alanine. Deletion analysis demonstrated that the CBD was essential for optimal xylanase activity of the enzyme, while the putative dockerin domain may not be required for enzyme function.Key words: xylanase, cellulose binding domain, Neocallimastix patriciarum.


2016 ◽  
Vol 3 (01) ◽  
Author(s):  
Rina Masriani ◽  
Taufan Hidayat ◽  
Dewi Christanti Trisulo

Protein molecule of endoglucanase Egl-II is consisted of two domains, namely cellulose-binding domain (CBD) which serves in promoting the adsorption of the enzyme to the insoluble crystalline cellulose and cellulase catalytic domain which is responsible for the hydrolysis reaction. In this study, CBD of endoglucanase Egl-II was separated from the intact protein by degradation using the papain and then separation by ultrafiltration methods. The CBD resulted can be used to modify the waste paper fibers. The results of electrophoresis before degradation showed that endoglucanase Egl-II has a molecular weight about 57.5 kDa. The electrophoregram after protein degradation and separation of CBD from the endoglucanase Egl-II showed that CBD was separated from the intact protein with a molecular weight about 21 kDa. The yield of CBDs were 59.51%. It can be concluded that CBD of endoglucanase Egl-II can be separated from the intact protein.Keywords: endoglucanase Egl-II, cellulose-binding domain, papain, ultrafiltration. ABSTRAKMolekul protein dari endoglukanase Egl-II terdiri dari dua domain, yaitu cellulose-binding domain (CBD) yang berfungsi untuk mempromosikan adsorpsi enzim ke selulosa kristalin dan domain katalitik yang bertanggung jawab dalam reaksi hidrolisis. Dalam studi ini, CBD dari endoglukanase Egl-II telah dipisahkan dari protein utuhnya setelah didegradasi dengan papain. Pemisahan CBD dari campuran hasil degradasi dilakukan dengan metode ultrafiltrasi. CBD yang dihasilkan dapat digunakan untuk memodifikasi serat kertas bekas. Hasil elektroforesis sebelum degradasi menunjukkan endoglukanase Egl-II memiliki massa molekul sekitar 57,5 kDa. Dari elektroforegram setelah degradasi protein dan pemisahan CBD dari endoglukanase Egl-II memperlihatkan bahwa CBD telah terpisah dari protein utuhnya dan memiliki massa molekul sekitar 21 kDa. Rendemen CBD adalah 59,51%. CBD dari endoglukanase Egl-II dapat dipisahkan dengan metode ini.Kata kunci: endoglukanase Egl-II, cellulose-binding domain, papain, ultrafiltrasi.


1999 ◽  
Vol 339 (2) ◽  
pp. 429-434
Author(s):  
J. Greg DOHENY ◽  
Eric J. JERVIS ◽  
M. Marta GUARNA ◽  
R. Keith HUMPHRIES ◽  
R. Antony J. WARREN ◽  
...  

A chimaera of stem cell factor (SCF) and a cellulose-binding domain from the xylanase Cex (CBDCex) effectively immobilizes SCF on a cellulose surface. The fusion protein retains both the cytokine properties of SCF and the cellulose-binding characteristics of CBDCex. When adsorbed on cellulose, SCF–CBDCex is up to 7-fold more potent than soluble SCF–CBDCex and than native SCF at stimulating the proliferation of factor-dependent cell lines. When cells are incubated with cellulose-bound SCF–CBDCex, activated receptors and SCF–CBDCex co-localize on the cellulose matrix. The strong binding of SCF–CBDCex to the cellulose surface permits the effective and localized stimulation of target cells; this is potentially significant for long-term perfusion culturing of factor-dependent cells. It also permits the direct analysis of the effects of surface-bound cytokines on target cells.


Sign in / Sign up

Export Citation Format

Share Document