Phenotype–genotype relationships in peroxisome biogenesis disorders of PEX1-defective complementation group 1 are defined by Pex1p–Pex6p interaction

2001 ◽  
Vol 357 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Shigehiko TAMURA ◽  
Naomi MATSUMOTO ◽  
Atsushi IMAMURA ◽  
Nobuyuki SHIMOZAWA ◽  
Yasuyuki SUZUKI ◽  
...  

The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleucodystrophy (NALD) and infantile Refsum disease (IRD), are fatal autosomal recessive diseases caused by impaired peroxisome biogenesis, of which 12 genotypes have been reported. ZS patients manifest the severest clinical and biochemical abnormalities, whereas those with NALD and IRD show less severity and the mildest features respectively. We have reported previously that temperature-sensitive peroxisome assembly is responsible for the mildness of the clinical features of IRD. PEX1 is the causative gene for PBDs of complementation group E (CG-E, CG1 in the U.S.A. and Europe), the PBDs of highest incidence, encoding the peroxin Pex1p of the AAA ATPase family. It has been also reported that Pex1p and Pex6p interact with each other. In the present study we investigated phenotype–genotype relationships of CG1 PBDs. Pex1p from IRD such as Pex1p with the most frequently identified mutation at G843D was largely degraded in vivo at 37°C, whereas a normal level of Pex1p was detectable at the permissive temperature. In contrast, PEX1 proteins derived from ZS patients, including proteins with a mutation at L664P or the deletion of residues 634–690, were stably present at both temperatures. Pex1p-G843D interacted with Pex6p at approx. 50% of the level of normal Pex1p, whereas Pex1p from ZS patients mostly showing non-temperature-sensitive peroxisome biogenesis hardly bound to Pex6p. Taking these results together, we consider it most likely that the stability of Pex1p reflects temperature-sensitive peroxisome assembly in IRD fibroblasts. Failure in Pex1p–Pex6p interaction gives rise to more severe abnormalities, such as those manifested by patients with ZS.

2008 ◽  
Vol 36 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Yukio Fujiki ◽  
Non Miyata ◽  
Naomi Matsumoto ◽  
Shigehiko Tamura

The peroxisome is a single-membrane-bound organelle found in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient PBDs (peroxisome biogenesis disorders), such as Zellweger syndrome. Two AAA (ATPase associated with various cellular activities) peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for CG (complementation group) 1 and CG4 PBDs respectively. PEX26, which is responsible for CG8 PBDs, codes for Pex26p, the recruiter of Pex1p–Pex6p complexes to peroxisomes. We recently assigned the binding regions between human Pex1p and Pex6p and elucidated the pivotal roles that the AAA cassettes, D1 and D2 domains, play in Pex1p–Pex6p interaction and in peroxisome biogenesis. ATP binding to both AAA cassettes of Pex1p and Pex6p was a prerequisite for the Pex1p–Pex6p interaction and peroxisomal localization, but ATP hydrolysis by the D2 domains was not required. Pex1p exists in two distinct oligomeric forms, a homo-oligomer in the cytosol and a hetero-oligomer on peroxisome membranes, with these possibly having distinct functions in peroxisome biogenesis. AAA peroxins are involved in the export from peroxisomes of Pex5p, the PTS1 (peroxisome-targeting signal type 1) receptor.


2004 ◽  
Vol 23 (6) ◽  
pp. 552-558 ◽  
Author(s):  
Nobuyuki Shimozawa ◽  
Toshiro Tsukamoto ◽  
Tomoko Nagase ◽  
Yasuhiko Takemoto ◽  
Naoki Koyama ◽  
...  

1998 ◽  
Vol 63 (2) ◽  
pp. 347-359 ◽  
Author(s):  
Daniel S. Warren ◽  
James C. Morrell ◽  
Hugo W. Moser ◽  
David Valle ◽  
Stephen J. Gould

1999 ◽  
Vol 65 (3) ◽  
pp. 621-634 ◽  
Author(s):  
Yifei Liu ◽  
Jonas Björkman ◽  
Aaron Urquhart ◽  
Ronald J.A. Wanders ◽  
Denis I. Crane ◽  
...  

2007 ◽  
Vol 388 (8) ◽  
pp. 797-804 ◽  
Author(s):  
Rajesh Mishra ◽  
Rajiv Bhat ◽  
Robert Seckler

Abstract Polyol co-solvents such as glycerol increase the thermal stability of proteins. This has been explained by preferential hydration favoring the more compact native over the denatured state. Although polyols are also expected to favor aggregation by the same mechanism, they have been found to increase the folding yields of some large, aggregation-prone proteins. We have used the homotrimeric phage P22 tailspike protein to investigate the origin of this effect. The folding of this protein is temperature-sensitive and limited by the stability of monomeric folding intermediates. At non-permissive temperature (≥35°C), tailspike refolding yields were increased significantly in the presence of 1–4 m glycerol. At low temperature, tailspike refolding is prevented when folding intermediates are destabilized by the addition of urea. Glycerol could offset the urea effect, suggesting that the polyol acts by stabilizing crucial folding intermediates and not by increasing solvent viscosity. The stabilization effect of glycerol on tailspike folding intermediates was confirmed in experiments using a temperature-sensitive folding mutant protein, by fluorescence measurements of subunit folding kinetics, and by temperature up-shift experiments. Our results suggest that the chemical chaperone effect of polyols observed in the folding of large proteins is due to preferential hydration favoring structure formation in folding intermediates.


2006 ◽  
Vol 188 (5) ◽  
pp. 1680-1690 ◽  
Author(s):  
Katherine A. Michie ◽  
Leigh G. Monahan ◽  
Peter L. Beech ◽  
Elizabeth J. Harry

ABSTRACT The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.


Sign in / Sign up

Export Citation Format

Share Document