peroxisome biogenesis
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 72)

H-INDEX

62
(FIVE YEARS 4)

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Jian Xiao ◽  
Bao-Liang Song ◽  
Jie Luo

Peroxisomes are actively involved in the metabolism of various lipids including fatty acids, ether phospholipids, bile acids as well as the processing of reactive oxygen and nitrogen species. Recent studies show that peroxisomes can regulate cholesterol homeostasis by mediating cholesterol transport from the lysosomes to the endoplasmic reticulum and towards primary cilium as well. Disruptions of peroxisome biogenesis or functions lead to peroxisomal disorders that usually involve neurological deficits. Peroxisomal dysfunction is also linked to several neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In many peroxisomal disorders and neurodegenerative diseases, aberrant cholesterol accumulation is frequently encountered yet largely neglected. This review discusses the current understanding of the mechanisms by which peroxisomes facilitate cholesterol trafficking within the cell and the pathological conditions related to impaired cholesterol transport by peroxisomes, with the hope to inspire future development of the treatments for peroxisomal disorders and neurodegenerative diseases.


2021 ◽  
Vol 177 ◽  
pp. S103
Author(s):  
Strahinja Djuric ◽  
Marija Aleksic ◽  
Andjelika Kalezic ◽  
Aleksandra Korac ◽  
Aleksandra Jankovic ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 341-352
Author(s):  
Shahrbanoo Rafiei ◽  
Fariba Khodagholi ◽  
Fereshteh Motamedi ◽  
Leila Dargahi ◽  
◽  
...  

Author(s):  
Amit S. Joshi

Peroxisomes are ubiquitous, single membrane-bound organelles that play a crucial role in lipid metabolism and human health. While peroxisome number is maintained by the division of existing peroxisomes, nascent peroxisomes can be generated from the endoplasmic reticulum (ER) membrane in yeasts. During formation and proliferation, peroxisomes maintain membrane contacts with the ER. In addition to the ER, contacts between peroxisomes and other organelles such as lipid droplets, mitochondria, vacuole, and plasma membrane have been reported. These membrane contact sites (MCS) are dynamic and important for cellular function. This review focuses on the recent developments in peroxisome biogenesis and the functional importance of peroxisomal MCS in yeasts.


2021 ◽  
Vol 17 (11) ◽  
pp. e1010041
Author(s):  
Zdeněk Verner ◽  
Vojtěch Žárský ◽  
Tien Le ◽  
Ravi Kumar Narayanasamy ◽  
Petr Rada ◽  
...  

Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90–100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
John Lee ◽  
Christine Yergeau ◽  
Kosuke Kawai ◽  
Nancy Braverman ◽  
Gwenaëlle S.G. Géléoc

2021 ◽  
Vol 22 (15) ◽  
pp. 7989
Author(s):  
Xiaofan Wei ◽  
Yunash Maharjan ◽  
Debra Dorotea ◽  
Raghbendra Kumar Dutta ◽  
Donghyun Kim ◽  
...  

Peroxisome abundance is regulated by homeostasis between the peroxisomal biogenesis and degradation processes. Peroxin 16 (PEX16) is a peroxisomal protein involved in trafficking membrane proteins for de novo peroxisome biogenesis. The present study demonstrates that PEX16 also modulates peroxisome abundance through pexophagic degradation. PEX16 knockdown in human retinal pigment epithelial-1 cells decreased peroxisome abundance and function, represented by reductions in the expression of peroxisome membrane protein ABCD3 and the levels of cholesterol and plasmalogens, respectively. The activation of pexophagy under PEX16 knockdown was shown by (i) abrogated peroxisome loss under PEX16 knockdown in autophagy-deficient ATG5 knockout cell lines, and (ii) increased autophagy flux and co-localization of p62—an autophagy adaptor protein—with ABCD3 in the presence of the autophagy inhibitor chloroquine. However, the levels of cholesterol and plasmalogens did not recover despite the restoration of peroxisome abundance following chloroquine treatment. Thus, PEX16 is indispensable for maintaining peroxisome homeostasis by regulating not only the commonly known biogenesis pathway but also the autophagic degradation of peroxisomes.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0000962021
Author(s):  
Takeshi Terabayashi ◽  
Luis F. Menezes ◽  
Fang Zhou ◽  
Hongyi Cai ◽  
Peter J. Walter ◽  
...  

Background: Multiple studies of tissue and cell samples from patients and pre-clinical models of autosomal dominant polycystic kidney disease report abnormal mitochondrial function and morphology and suggest metabolic reprogramming is an intrinsic feature of this disease. Peroxisomes interact with mitochondria physically and functionally, and congenital peroxisome biogenesis disorders can cause various phenotypes, including mitochondrial defects, metabolic abnormalities and renal cysts. We hypothesized that a peroxisomal defect might contribute to the metabolic and mitochondrial impairments observed in autosomal dominant polycystic kidney disease. Methods: Using control and Pkd1-/-kidney epithelial cells, we investigated peroxisome abundance, biogenesis and morphology by immunoblotting, immunofluorescent and live cell imaging of peroxisome-related proteins and assayed peroxisomal specific β-oxidation. We further analyzed fatty acid composition by mass spectrometry in kidneys of Pkd1fl/fl; Ksp-Cre mice. We also evaluated peroxisome lipid metabolism in published metabolomics datasets of Pkd1 mutant cells and kidneys. Lastly, we investigated if the C-terminus or full-length polycystin-1 co-localize with peroxisome markers by imaging studies. Results: Peroxisome abundance, morphology and peroxisome-related protein expression in Pkd1 -/- cells were normal, suggesting preserved peroxisome biogenesis. Peroxisomal β-oxidation was not impaired in Pkd1-/-cells, and there was no obvious accumulation of very long chain fatty acids in kidneys of mutant mice. Re-analysis of published datasets provide little evidence of peroxisomal abnormalities in independent sets of Pkd1 mutant cells and cystic kidneys, while providing further evidence of mitochondrial fatty acid oxidation defects. Imaging studies with either full length polycystin-1 or its C-terminus, a fragment previously shown to go to the mitochondria, showed minimal co-localization with peroxisome markers restricted to putative mitochondrion-peroxisome contact sites. Conclusions: Our studies showed that loss of Pkd1 does not disrupt peroxisome biogenesis nor peroxisome-dependent fatty acid (FA) metabolism.


2021 ◽  
Author(s):  
Matthew Anderson-Baron ◽  
Kazuki Ueda ◽  
Julie Haskins ◽  
Sarah C Hughes ◽  
Andrew Simmonds

The activity of multiple organelles must be coordinated to ensure cellular lipid homeostasis. This includes the peroxisomes which metabolise certain lipids and lipid droplets which act as neutral lipid storage centres. Direct organellar contact between peroxisomes and lipid droplets has been observed, and interaction between proteins associated with the membranes of these organelles has been shown, but the functional role of these interactions is not clear. In Drosophila cells, we identified a novel localization of a subset of three transmembrane Peroxin proteins (Peroxin3, Peroxin13, and Peroxin14), normally required for peroxisome biogenesis, to newly formed lipid droplets. This event was not linked to significant changes in peroxisome size or number, nor was recruitment of other Peroxin proteins or mature peroxisomes observed. The presence of these Peroxin proteins at lipid droplets influences their function as changes in the relative levels of Peroxin14 associated with the lipid droplet surface directly affected the presence of regulatory perilipin and lipases with corresponding effects on triglyceride storage.


Author(s):  
Renate L. M. Jansen ◽  
Carlos Santana-Molina ◽  
Marco van den Noort ◽  
Damien P. Devos ◽  
Ida J. van der Klei

PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.


Sign in / Sign up

Export Citation Format

Share Document