denatured state
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 24)

H-INDEX

52
(FIVE YEARS 2)

2021 ◽  
Vol 119 (1) ◽  
pp. e2109169119
Author(s):  
Kristen A. Gaffney ◽  
Ruiqiong Guo ◽  
Michael D. Bridges ◽  
Shaima Muhammednazaar ◽  
Daoyang Chen ◽  
...  

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron–electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli’s lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


2021 ◽  
Author(s):  
James O. Wrabl ◽  
Keila Voortman-Sheetz ◽  
Vincent J. Hilser

'Metamorphic' proteins challenge state-of-the-art structure prediction methods reliant on amino acid similarity. Unfortunately, this obviates a more effective thermodynamic approach necessary to properly evaluate the impact of amino acid changes on the stability of two different folds. A vital capability of such a thermodynamic approach would be the quantification of the free energy differences between 1) the energy landscape minima of each native fold, and 2) each fold and the denatured state. Here we develop an energetic framework for conformational specificity, based on an ensemble description of protein thermodynamics. This energetic framework was able to successfully recapitulate the structures of high-identity engineered sequences experimentally shown to adopt either Streptococcus protein GA or GB folds, demonstrating that this approach indeed reflected the energetic determinants of fold. Residue-level decomposition of the conformational specificity suggested several testable hypotheses, notably among them that fold-switching could be affected by local de-stabilization of the populated fold at positions sensitive to equilibrium perturbation. Since this ensemble-based compatibility framework is applicable to any structure and any sequence, it may be practically useful for the future targeted design, or large-scale proteomic detection, of novel metamorphic proteins.


Author(s):  
H. I. Rösner ◽  
M. Caldarini ◽  
G. Potel ◽  
D. Malmodin ◽  
M. A. Vanoni ◽  
...  
Keyword(s):  

Author(s):  
Heike Rösner ◽  
Martina Caldarini ◽  
Gregory Potel ◽  
Daniel Malmodin ◽  
Maria Vanoni ◽  
...  

The denatured state of several proteins has been shown to display transient structures that are relevant for folding, stability and aggregation. To detect them by nuclear magnetic resonance (NMR) spectroscopy, the denatured state must be stabilized by chemical agents or changes in temperature. This makes the environment different from that experienced in biologically relevant processes. Using high-resolution heteronuclear NMR spectroscopy, we have characterized several denatured states of a monomeric variant of HIV-1 protease induced by different concentrations of urea, guanidinium chloride and acetic acid. We have extrapolated the chemical shifts and the relaxation parameters to the denaturant-free denatured state at native conditions, showing that they converge to the same values. Subsequently, we characterized the conformational properties of this biologically relevant denatured state under native conditions by advanced molecular dynamics simulations and validated the results by comparison to experimental data. We show that the denatured state of HIV-1 protease under native conditions displays rich patterns of transient native and non-native structures, which could be of relevance to its guidance through a complex folding process.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 810
Author(s):  
Md. Golam Kibria ◽  
Akari Fukutani ◽  
Yoko Akazawa-Ogawa ◽  
Yoshihisa Hagihara ◽  
Yutaka Kuroda

In this study, we assessed the potential of arginine and lysine solubility-enhancing peptide (SEP) tags to control the solubility of a model protein, anti-EGFR VHH-7D12, in a thermally denatured state at a high temperature. We produced VHH-7D12 antibodies attached with a C-terminal SEP tag made of either five or nine arginines or lysines (7D12-C5R, 7D12-C9R, 7D12-C5K and 7D12-C9K, respectively). The 5-arginine and 5-lysine SEP tags increased the E. coli expression of VHH-7D12 by over 80%. Biophysical and biochemical analysis confirmed the native-like secondary and tertiary structural properties and the monomeric nature of all VHH-7D12 variants. Moreover, all VHH-7D12 variants retained a full binding activity to the EGFR extracellular domain. Finally, thermal stress with 45-minute incubation at 60 and 75 °C, where VHH-7D12 variants are unfolded, showed that the untagged VHH-7D12 formed aggregates in all of the four buffers, and the supernatant protein concentration was reduced by up to 35%. 7D12-C5R and 7D12-C9R did not aggregate in Na-acetate (pH 4.7) and Tris-HCl (pH 8.5) but formed aggregates in phosphate buffer (PB, pH 7.4) and phosphate buffer saline (PBS, pH 7.4). The lysine tags (either C5K or C9K) had the strongest solubilization effect, and both 7D12-C5K and 7D12-C9K remained in the supernatant. Altogether, our results indicate that, under a thermal stress condition, the lysine SEP tags solubilization effect is more potent than that of an arginine SEP tags, and the SEP tags did not affect the structural and functional properties of the protein.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shang-Te Danny Hsu ◽  
Yun-Tzai Cloud Lee ◽  
Kornelia M. Mikula ◽  
Sofia M. Backlund ◽  
Igor Tascón ◽  
...  

Knots have attracted scientists in mathematics, physics, biology, and engineering. Long flexible thin strings easily knot and tangle as experienced in our daily life. Similarly, long polymer chains inevitably tend to get trapped into knots. Little is known about their formation or function in proteins despite >1,000 knotted proteins identified in nature. However, these protein knots are not mathematical knots with their backbone polypeptide chains because of their open termini, and the presence of a “knot” depends on the algorithm used to create path closure. Furthermore, it is generally not possible to control the topology of the unfolded states of proteins, therefore making it challenging to characterize functional and physicochemical properties of knotting in any polymer. Covalently linking the amino and carboxyl termini of the deeply trefoil-knotted YibK from Pseudomonas aeruginosa allowed us to create the truly backbone knotted protein by enzymatic peptide ligation. Moreover, we produced and investigated backbone cyclized YibK without any knotted structure. Thus, we could directly probe the effect of the backbone knot and the decrease in conformational entropy on protein folding. The backbone cyclization did not perturb the native structure and its cofactor binding affinity, but it substantially increased the thermal stability and reduced the aggregation propensity. The enhanced stability of a backbone knotted YibK could be mainly originated from an increased ruggedness of its free energy landscape and the destabilization of the denatured state by backbone cyclization with little contribution from a knot structure. Despite the heterogeneity in the side-chain compositions, the chemically unfolded cyclized YibK exhibited several macroscopic physico-chemical attributes that agree with theoretical predictions derived from polymer physics.


2021 ◽  
Author(s):  
Kristen Gaffney ◽  
Ruiqiong Guo ◽  
Michael D Bridges ◽  
Daoyang Chen ◽  
Shaima Muhammednazaar ◽  
...  

Defining the denatured state ensemble (DSE) and intrinsically disordered proteins is essential to understanding protein folding, chaperone action, degradation, translocation and cell signaling. While a majority of studies have focused on water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we reconstituted the DSE of a helical bundle membrane protein GlpG of Escherichia coli in native lipid bilayers and measured its conformation and compactness. The DSE was obtained using steric trapping, which couples spontaneous denaturation of a doubly biotinylated GlpG to binding of two bulky monovalent streptavidin molecules. Using limited proteolysis and mass spectrometry, we mapped the flexible regions in the DSE. Using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy, we determined the dimensions of the DSE. Finally, we employed our Upside model for molecular dynamics simulations to generate the DSE including the collapsed and fully expanded states in a bilayer. We find that the DSE is highly dynamic involving the topology changes of transmembrane segments and their unfolding. The DSE is expanded relative to the native state, but only to 55-90% of the fully expanded condition. The degree of expansion depends on the chemical potential with regards to local packing and the lipid composition. Our result suggests that the native lipid bilayer promotes the association of helices in the DSE of membrane proteins and, probably in general, facilitating interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-76
Author(s):  
Xingjian Xu ◽  
Igor Dikiy ◽  
Matthew R. Evans ◽  
Leandro P. Marcelino ◽  
Kevin H. Gardner

Abstract. Recent research on fold-switching metamorphic proteins has revealed some notable exceptions to Anfinsen's hypothesis of protein folding. We have previously described how a single point mutation can enable a well-folded protein domain, one of the two PAS (Per-ARNT-Sim) domains of the human ARNT (aryl hydrocarbon receptor nuclear translocator) protein, to interconvert between two conformers related by a slip of an internal β strand. Using this protein as a test case, we advance the concept of a “fragile fold”, a protein fold that can reversibly rearrange into another fold that differs by a substantial number of hydrogen bonds, entailing reorganization of single secondary structure elements to more drastic changes seen in metamorphic proteins. Here we use a battery of biophysical tests to examine several factors affecting the equilibrium between the two conformations of the switching ARNT PAS-B Y456T protein. Of note is that we find that factors which impact the HI loop preceding the shifted Iβ strand affect both the equilibrium levels of the two conformers and the denatured state which links them in the interconversion process. Finally, we describe small molecules that selectively bind to and stabilize the wild-type conformation of ARNT PAS-B. These studies form a toolkit for studying fragile protein folds and could enable ways to modulate the biological functions of such fragile folds, both in natural and engineered proteins.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 634
Author(s):  
Elisia A. Paiz ◽  
Karen A. Lewis ◽  
Steven T. Whitten

The α and polyproline II (PPII) basins are the two most populated regions of the Ramachandran map when constructed from the protein coil library, a widely used denatured state model built from the segments of irregular structure found in the Protein Data Bank. This indicates the α and PPII conformations are dominant components of the ensembles of denatured structures that exist in solution for biological proteins, an observation supported in part by structural studies of short, and thus unfolded, peptides. Although intrinsic conformational propensities have been determined experimentally for the common amino acids in short peptides, and estimated from surveys of the protein coil library, the ability of these intrinsic conformational propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs), an increasingly important class of proteins in cell function, has thus far proven elusive to establish. Recently, we demonstrated that the sequence dependence of the mean hydrodynamic size of IDPs in water and the impact of heat on the coil dimensions, provide access to both the sequence dependence and thermodynamic energies that are associated with biases for the α and PPII backbone conformations. Here, we compare results from peptide-based studies of intrinsic conformational propensities and surveys of the protein coil library to those of the sequence-based analysis of heat effects on IDP hydrodynamic size, showing that a common structural and thermodynamic description of the protein denatured state is obtained.


Sign in / Sign up

Export Citation Format

Share Document