Natural history of ABC systems: not only transporters

2011 ◽  
Vol 50 ◽  
pp. 19-42 ◽  
Author(s):  
Elie Dassa

In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.

Author(s):  
Thibaut Brunet ◽  
Marvin Albert ◽  
William Roman ◽  
Danielle C. Spitzer ◽  
Nicole King

The evolution of different cell types was a key process of early animal evolution1–3. Two fundamental cell types, epithelial cells and amoeboid cells, are broadly distributed across the animal tree of life4,5 but their origin and early evolution are unclear. Epithelial cells are polarized, have a fixed shape and often bear an apical cilium and microvilli. These features are shared with choanoflagellates – the closest living relatives of animals – and are thought to have been inherited from their last common ancestor with animals1,6,7. The deformable amoeboid cells of animals, on the other hand, seem strikingly different from choanoflagellates and instead evoke more distantly related eukaryotes, such as diverse amoebae – but it has been unclear whether that similarity reflects common ancestry or convergence8. Here, we show that choanoflagellates subjected to spatial confinement differentiate into an amoeboid phenotype by retracting their flagella and microvilli, generating blebs, and activating myosin-based motility. Choanoflagellate cell crawling is polarized by geometrical features of the substrate and allows escape from confined microenvironments. The confinement-induced amoeboid switch is conserved across diverse choanoflagellate species and greatly expands the known phenotypic repertoire of choanoflagellates. The broad phylogenetic distribution of the amoeboid cell phenotype across animals9–14 and choanoflagellates, as well as the conserved role of myosin, suggests that myosin-mediated amoeboid motility was present in the life history of their last common ancestor. Thus, the duality between animal epithelial and crawling cells might have evolved from a temporal phenotypic switch between flagellate and amoeboid forms in their single-celled ancestors3,15,16.


Paleobiology ◽  
2000 ◽  
Vol 26 (S4) ◽  
pp. 1-14 ◽  
Author(s):  
Andrew H. Knoll ◽  
Richard K. Bambach

Issues of directionality in the history of life can be framed in terms of six major evolutionary steps, or megatrajectories (cf. Maynard Smith and Szathmáry 1995): (1) evolution from the origin of life to the last common ancestor of extant organisms, (2) the metabolic diversification of bacteria and archaea, (3) evolution of eukaryotic cells, (4) multicellularity, (5) the invasion of the land and (6) technological intelligence. Within each megatrajectory, overall diversification conforms to a pattern of increasing variance bounded by a right wall as well as one on the left. However, the expanding envelope of forms and physiologies also reflects—at least in part—directional evolution within clades. Each megatrajectory has introduced fundamentally new evolutionary entities that garner resources in new ways, resulting in an unambiguously directional pattern of increasing ecological complexity marked by expanding ecospace utilization. The sequential addition of megatrajectories adheres to logical rules of ecosystem function, providing a blueprint for evolution that may have been followed to varying degrees wherever life has arisen.


2014 ◽  
Vol 111 (10) ◽  
pp. 3763-3768 ◽  
Author(s):  
James T. Kratzer ◽  
Miguel A. Lanaspa ◽  
Michael N. Murphy ◽  
Christina Cicerchi ◽  
Christina L. Graves ◽  
...  

Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.


2011 ◽  
Vol 162 (1) ◽  
pp. 53-70 ◽  
Author(s):  
Elie Desmond ◽  
Celine Brochier-Armanet ◽  
Patrick Forterre ◽  
Simonetta Gribaldo

Author(s):  
Muthulakshmi M, Et. al.

Genome sequencing aids in understanding the nature, characteristics, habitat and evolutionary history of all living organisms. Apart from sequencing, the more important task is to correctly place the sequenced genome in the taxonomy. Generally, the taxonomic classification of the living organisms is done by observing their morphological, behavioral, genetic and biochemical characteristics. Among them, taxonomic classification using genetic observation is more accurate scientifically as the Genome sequence analysis exploits the complete characteristics of the organism. In this paper, we developed a novel Frequency based Feature Extraction Technique (FFET) which extracts 120 features and helps to analyze the genome sequence of the organism and to classify them in the taxonomy accordingly. We performed a kingdom level taxonomic classification using the proposed FFET. The proposed FFET extracts features based on storage, frequency of nucleotide bases, pattern arrangement and amino acid composition of genome sequences. The feature extraction technique is applied to 150 samples of genome sequences of various organisms which were downloaded from National Centre for Biotechnology and Information (NCBI) database. The extracted features are classified using various Machine learning and Deep learning classifiers. From the results, it is evident that FFET performs well for classification with Convolutional Neural Network (CNN) classifier with an accuracy of 96.73 %.


2008 ◽  
Vol 212 (4) ◽  
pp. 544-562 ◽  
Author(s):  
Matthew W. Tocheri ◽  
Caley M. Orr ◽  
Marc C. Jacofsky ◽  
Mary W. Marzke

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1001
Author(s):  
Zhiqing Xue ◽  
Josef Greimler ◽  
Ovidiu Paun ◽  
Kerry Ford ◽  
Michael H. J. Barfuss ◽  
...  

The contrasting evolutionary histories of endemic versus related cosmopolitan species provide avenues to understand the spatial drivers and limitations of biodiversity. Here, we investigated the evolutionary history of three New Zealand endemic Deschampsia species, and how they are related to cosmopolitan D. cespitosa. We used RADseq to test species delimitations, infer a dated species tree, and investigate gene flow patterns between the New Zealand endemics and the D. cespitosa populations of New Zealand, Australia and Korea. Whole plastid DNA analysis was performed on a larger worldwide sampling. Morphometrics of selected characters were applied to New Zealand sampling. Our RADseq review of over 55 Mbp showed the endemics as genetically well-defined from each other. Their last common ancestor with D. cespitosa lived during the last ten MY. The New Zealand D. cespitosa appears in a clade with Australian and Korean samples. Whole plastid DNA analysis revealed the endemics as members of a southern hemisphere clade, excluding the extant D. cespitosa of New Zealand. Both data provided strong evidence for hybridization between D. cespitosa and D. chapmanii. Our findings provide evidence for at least two migration events of the genus Deschampsia to New Zealand and hybridization between D. cespitosa and endemic taxa.


Sign in / Sign up

Export Citation Format

Share Document