scholarly journals The Evolutionary History of New Zealand Deschampsia Is Marked by Long-Distance Dispersal, Endemism, and Hybridization

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1001
Author(s):  
Zhiqing Xue ◽  
Josef Greimler ◽  
Ovidiu Paun ◽  
Kerry Ford ◽  
Michael H. J. Barfuss ◽  
...  

The contrasting evolutionary histories of endemic versus related cosmopolitan species provide avenues to understand the spatial drivers and limitations of biodiversity. Here, we investigated the evolutionary history of three New Zealand endemic Deschampsia species, and how they are related to cosmopolitan D. cespitosa. We used RADseq to test species delimitations, infer a dated species tree, and investigate gene flow patterns between the New Zealand endemics and the D. cespitosa populations of New Zealand, Australia and Korea. Whole plastid DNA analysis was performed on a larger worldwide sampling. Morphometrics of selected characters were applied to New Zealand sampling. Our RADseq review of over 55 Mbp showed the endemics as genetically well-defined from each other. Their last common ancestor with D. cespitosa lived during the last ten MY. The New Zealand D. cespitosa appears in a clade with Australian and Korean samples. Whole plastid DNA analysis revealed the endemics as members of a southern hemisphere clade, excluding the extant D. cespitosa of New Zealand. Both data provided strong evidence for hybridization between D. cespitosa and D. chapmanii. Our findings provide evidence for at least two migration events of the genus Deschampsia to New Zealand and hybridization between D. cespitosa and endemic taxa.

2010 ◽  
Vol 23 (2) ◽  
pp. 112 ◽  
Author(s):  
Steven J. Wagstaff ◽  
Brian P. J. Molloy ◽  
Jennifer A. Tate

Parsimony and SplitsTree analyses of ITS and 5′ trnK/matK sequence data were used to assess the extent of hybridisation and its evolutionary significance in the New Zealand endemic genus Hoheria A.Cunn. The seven species of Hoheria form a monophyletic group along with the New Zealand endemic genus Plagianthus J.R.Forst. & G.Forst. and the Australian endemics Asterotrichion Klotzsch. and Gynatrix Alef. This strongly supported clade is sister to a clade of Australian species of Lawrencia Hook. The inferred evolutionary history of Hoheria suggests that the extant species are derived from a common ancestor that arrived in New Zealand by long-distance dispersal. There was little divergence among the species of Hoheria in either their ITS or trnK/matK sequences. Two known Hoheria hybrids exhibited overlapping heteromorphic nucleotides at virtually all of the variable positions. Approximately 40% of the other Hoheria accessions in our study retain similar heteromorphic sites. These polymorphisms were shared among the deepest branches in the ITS phylogeny, which potentially suggests that hybridisation has occurred throughout the evolutionary history of Hoheria. The phylogenetic structure of the ITS phylogeny completely collapsed in the strict consensus tree, and there was significant conflict between the biparentally inherited ITS phylogeny and the maternally inherited trnK/matK phylogeny. However, the removal of known and suspected hybrids resulted in parsimony trees that were more resolved. SplitsTree analyses revealed incompatible signals in the data, but recovered well supported groups that diverged from a central boxy network. Although the species of Hoheria are isolated by their ecological preferences or geographical distributions, interspecific hybrids are common in urban areas where the species are often planted.


2014 ◽  
Vol 111 (10) ◽  
pp. 3763-3768 ◽  
Author(s):  
James T. Kratzer ◽  
Miguel A. Lanaspa ◽  
Michael N. Murphy ◽  
Christina Cicerchi ◽  
Christina L. Graves ◽  
...  

Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients.


2008 ◽  
Vol 212 (4) ◽  
pp. 544-562 ◽  
Author(s):  
Matthew W. Tocheri ◽  
Caley M. Orr ◽  
Marc C. Jacofsky ◽  
Mary W. Marzke

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 940
Author(s):  
Marcin Górniak ◽  
Anna Jakubska-Busse ◽  
Marek S. Ziętara

The lady’s slipper orchid (Cypripedium calceolus), which inhabits shady deciduous and mixed forests and meadows, is now threatened with extinction in many European countries, and its natural populations have been dramatically declining in recent years. Knowledge of its evolutionary history, genetic variability, and processes in small populations are therefore crucial for the species’ protection. Nowadays, in south-west Poland, it is only distributed in seven small remnant and isolated populations, which we examined. One nuclear (ITS rDNA) and two plastid (accD-psa1, trnL-F) markers were analyzed and compared globally in this study. Based on the nuclear marker, the most common ancestor of C. calceolus and Cypripedium shanxiense existed about 2 million years ago (95% HPD: 5.33–0.44) in Asia. The division of the C. calceolus population into the European and Asian lineages indicated by C/T polymorphism started about 0.5 million years ago (95% HPD: 1.8–0.01). The observed variation of plastid DNA, which arose during the Pleistocene glacial–interglacial cycles, is still diffuse in Poland. Its distribution is explained by the result of fragmentation or habitat loss due to human impact on the environment.


2002 ◽  
Vol 55 ◽  
pp. 42-48 ◽  
Author(s):  
S.L.H. Viljanen-Rollinson ◽  
M.G. Cromey

The long distance dispersal of many plant pathogens has been well documented This phenomenon is also common in Australasia with wind currents and movement of people and possibly plant material facilitating introduction of several rust pathogens from Australia to New Zealand The history of the arrival survival and spread of three rust pathogens from Australia to New Zealand is outlined Initial outbreaks of poplar rust in 1973 wheat stripe rust in 1980 and blackberry rust in 1990 are all likely to have been initiated from spores originating in Australia After arrival urediniospores have to be viable and there must be sufficient susceptible hosts and favourable environmental conditions so that initial infection foci can establish and facilitate further spread This information is used to assess the risks posed to New Zealand by other rust pathogens that occur in Australia such as asparagus rust and to assess ways to minimise these risks


Parasitology ◽  
2010 ◽  
Vol 138 (13) ◽  
pp. 1737-1749 ◽  
Author(s):  
JOANA C. SILVA ◽  
AMY EGAN ◽  
ROBERT FRIEDMAN ◽  
JAMES B. MUNRO ◽  
JANE M. CARLTON ◽  
...  

SUMMARYObjectiveThe evolutionary history of human malaria parasites (genus Plasmodium) has long been a subject of speculation and controversy. The complete genome sequences of the two most widespread human malaria parasites, P. falciparum and P. vivax, and of the monkey parasite P. knowlesi are now available, together with the draft genomes of the chimpanzee parasite P. reichenowi, three rodent parasites, P. yoelii yoelli, P. berghei and P. chabaudi chabaudi, and one avian parasite, P. gallinaceum.MethodsWe present here an analysis of 45 orthologous gene sequences across the eight species that resolves the relationships of major Plasmodium lineages, and provides the first comprehensive dating of the age of those groups.ResultsOur analyses support the hypothesis that the last common ancestor of P. falciparum and the chimpanzee parasite P. reichenowi occurred around the time of the human-chimpanzee divergence. P. falciparum infections of African apes are most likely derived from humans and not the other way around. On the other hand, P. vivax, split from the monkey parasite P. knowlesi in the much more distant past, during the time that encompasses the separation of the Great Apes and Old World Monkeys.ConclusionThe results support an ancient association between malaria parasites and their primate hosts, including humans.


Author(s):  
Warren Francis

Steroid and hopanoid biomarkers can be found in ancient rocks and may give a glimpse of what life was present at that time. Sterols and hopanoids are produced by two related enzymes, though the evolutionary history of this protein family is complicated by losses and horizontal gene transfers, and appears to be widely misinterpretted. Here, I have added sequences from additional key species, and re-analysis of the phylogeny of SHC and OSC indicates a single origin of both enzymes among eukaryotes. This pattern is best explained by vertical inheritance of both enzymes from a bacterial ancestor, followed by widespread loss of SHC, and two subsequent HGT events to ferns and ascomycetes. Thus, the last common ancestor of eukaryotes would have been bifunctional for both sterol and hopanoid production. Later enzymatic innovations allowed diversification of sterols in eukaryotes. Contrary to previous interpretations, the LCA of eukaryotes potentially would have been able to produce hopanoids as a substitute for sterols in anaerobic conditions. Without invoking any other metabolic demand, the LCA of eukaryotes could have been a facultative aerobe, living in unstable conditions with respect to oxygen level.


Author(s):  
Warren Francis

Steroid and hopanoid biomarkers can be found in ancient rocks and, in principle, can give a glimpse of what life was present at that time. Sterols and hopanoids are produced by two related enzymes, though the evolutionary history of this protein family is complicated by losses and horizontal gene transfers, and appears to be widely misinterpretted. Here, I have added sequences from additional key species, and re-analysis of the phylogeny of SHC and OSC indicates a single origin of both enzymes among eukaryotes. This pattern is best explained by vertical inheritance of both enzymes from a bacterial ancestor, followed by widespread loss of SHC, and two subsequent HGT events to ferns and ascomycetes. Thus, the last common ancestor of eukaryotes would have been bifunctional for both sterol and hopanoid production. Later enzymatic innovations allowed diversification of sterols in eukaryotes. Contrary to previous interpretations, the LCA of eukaryotes potentially would have been able to produce hopanoids as a substitute for sterols in anaerobic conditions. Without invoking any other metabolic demand, the LCA of eukaryotes could have been a facultative aerobe, living in unstable conditions with respect to oxygen level.


Author(s):  
E. Punithalingam

Abstract A description is provided for Scirrhia pini[Mycosphaerella pini]. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On pines including Pinus radiata and its hybrids, P. halepensis, P. canariensis, P. carbaea, P. ponderosa, P. nigra and others, Pseudotsuga menziesii (46, 2860), Larix decidua (49, 273). DISEASE: Dothistroma blight; red band. GEOGRAPHICAL DISTRIBUTION: North America (Canada, USA including Alaska), South America (Argentina, Brazil, Chile, Uruguay), Australasia and Oceania (New Zealand), Asia (Brunei, India, Japan), Africa (Ethiopia, Kenya, Malawi, Rhodesia, Swaziland, Tanzania, Uganda), Europe (Austria, France, Rumania, UK, USSR (Republic of Georgia), Yugoslavia) (CMI Map 419, ed. 2, 1970; record in CMI Herbarium). TRANSMISSION: By airborne conidia released and dispersed by a splash take-off mechanism for short distances. Long distance dispersal may be by transport of infected material, such as nursery stock and, under special conditions, clouds may carry sporal inoculum (43, 2100). Survival time of inoculum in the form of cast, infected foliage on the forest floor is limited to 2-6 months under moist conditions (50, 2003).


Sign in / Sign up

Export Citation Format

Share Document